👤

1. Fie E(x) = [( x+1 supra 3x-3 - 4 supra 3x² -3 - x-2 supra 3x+3)  · 6x supra 5x + 10  - x supra x+2] · 7x-14 supra 2(x-1) 
a) Pentru ce valori reale a lui x expresia E nu este definita? 
b) Aduceti fractia la forma cea mai simpla 
 

Va rog imi scrieti pas cu pas. Si rog seriozitate. Multumesc anticipat


Răspuns :

Expresia E nu este definita pentru valorile 3[tex] x^{2} [/tex] si x[tex] x^{2} \frac{x}{y} x+2[/tex] 2) asta nu imi pot da seama... Sorry
E(x)={[(x+1)/(3x-3)-4/(3x²-3)-(x-2)/(3x+3)]·6x/(5x+10)-x/(x+2)}·(7x-14)/2(x-1)
E(x)={[(x+1)/3(x-1)-4/3(x²-1)-(x-2)/3(x+1)]·6x/5(x+2)-x/(x+2)}·7(x-2)/2(x-1)
E(x)={[(x+1)/3(x-1)-4/3(x-1)(x+1)-(x-2)/3(x+1)]·6x/5(x+2)-x/(x+2)}·7(x-2)/2(x-1)
E(x)={[(x+1)(x+1)-4-(x-2)(x-1)/3(x-1)(x+1)]·6x/5(x+2)-x/(x+2)}·7(x-2)/2(x-1)
E(x)={[(x²+2x+1-4-x²+3x-2)/3(x-1)(x+1)]·6x/5(x+2)-x/(x+2)}·7(x-2)/2(x-1)
E(x)={[(5x-5)/3(x-1)(x+1)]·6x/5(x+2)-x/(x+2)}·7(x-2)/2(x-1)
E(x)={[5(x-1)/3(x-1)(x+1)]·6x/5(x+2)-x/(x+2)}·7(x-2)/2(x-1) se simplif.cu x-1=
E(x)={[5/3(x+1)]·6x/5(x+2)-x/(x+2)}·7(x-2)/2(x-1)
E(x)={30x/15(x+1)(x+2)-x/(x+2)}·7(x-2)/2(x-1)
E(x)={2x/(x+1)(x+2)-x/(x+2)}·7(x-2)/2(x-1)
E(x)={2x-x(x+1)/(x+1)(x+2)}·7(x-2)/2(x-1)
E(x)={(-x(x-1)/(x+1)(x+2)}·7(x-2)/2(x-1) simplif.cu x-1
E(x)=[-7x(x-2)/2(x+1)(x+2)]
a) cond.x≠-1 si x≠-2
b) -7x(x-2)=0
x₁=0
x₂=2