Răspuns :
[tex]\displaystyle 1).1+5+9+13+...+25 \\ 25=1+(n-1) \cdot 4\Rightarrow 25=1+4n-4 \Rightarrow 4n=25-1+4 \Rightarrow \\ \Rightarrow 4n=28 \Rightarrow n= \frac{28}{4} \Rightarrow n=7 \\ S_7= \frac{2+6 \cdot 4}{2} \cdot 7 \\ \\ S_7= \frac{2+24}{2} \cdot 7 \\ \\ S_7= \frac{26}{2} \cdot 7 \\ \\ S_7=13 \cdot 7 \\ S_7=91 [/tex]
[tex]\displaystyle 2).1+3+5+...+21 \\ 21=1+(n-1) \cdot 2 \Rightarrow 21=1+2n-2 \Rightarrow 2n=21-1+2 \Rightarrow \\ \Rightarrow 2n=22 \Rightarrow n= \frac{22}{2} \Rightarrow n=11 \\ S_{11}= \frac{2+10 \cdot 2}{2} \cdot 11 \\ \\ S_{11}= \frac{2+20}{2} \cdot 11 \\ \\ S_{11}= \frac{22}{2} \cdot 11 \\ \\ S_{11}=11 \cdot 11 \\ S_{11}=121 [/tex]
[tex]\displaystyle 3).a_3=5,~a_6=11,~a_9=? \\ a_3=5 \Rightarrow a_{3-1}+r=5 \Rightarrow a_2+r=5 \Rightarrow a_1+2r=5 \Rightarrow a_1=5-2r \\ a_6=11 \Rightarrow a_{6-1}+r=11 \Rightarrow a_5+r=11 \Rightarrow a_1+5r=11 \Rightarrow \\ \Rightarrow 5-2r+5r=11 \Rightarrow 5+3r=11 \Rightarrow 3r=11-5 \Rightarrow 3r=6 \Rightarrow \\ \Rightarrow r= \frac{6}{3} \Rightarrow r=2 \\ a_1=5-2r \Rightarrow a_1=5-2 \cdot 2 \Rightarrow a_1=5-4 \Rightarrow a_1=1 [/tex]
[tex]\displaystyle a_9=a_{9-1}+r \Rightarrow a_9=a_8+r \Rightarrow a_9=a_1+8r \Rightarrow a_9=1+8 \cdot 2 \Rightarrow \\ \Rightarrow a_9=1+16 \Rightarrow a_9=17[/tex]
[tex]\displaystyle 4).1+11+21+31+...+111 \\ 111=1+(n-1) \cdot 10 \Rightarrow 111=1+10n-10 \Rightarrow 10n=111-1+10 \Rightarrow \\ \Rightarrow 10n=120 \Rightarrow n= \frac{120}{10} \Rightarrow n=12 \\ S_{12}= \frac{2+11 \cdot 10}{2} \cdot 12 \\ \\ S_{12}= \frac{2+110}{2} \cdot 12 \\ \\ S_{12}= \frac{112}{2} \cdot 12 \\ \\ S_{12}=56 \cdot 12 \\ S_{12}=672 [/tex]
[tex]\displaystyle 5).a_1=7,~a_2=9 \\ a_2=9 \Rightarrow a_{2-1}+r=9 \Rightarrow a_1+r=9 \Rightarrow 7+r=9 \Rightarrow \\ \Rightarrow r=9-7 \Rightarrow r=2 \\ a_5=a_{5-1}+r \Rightarrow a_5=a_4+r \Rightarrow a_5=a_1+4r \Rightarrow a_5=7+4 \cdot 2 \Rightarrow \\ \Rightarrow a_5=7+8 \Rightarrow a_5=15 [/tex]
[tex]\displaystyle 6).1,7,13,19 \\ a_1=1,~a_2=7,~a_3=13,~a_4=19 \\ r=7-1 \Rightarrow r=6 \\ a_1_0=a_{10-1}+r \Rightarrow a_{10}=a_9+r \Rightarrow a_{10}=a_1+9r \Rightarrow a_{10}=1+9 \cdot 6 \Rightarrow \\ \Rightarrow a_{10}=1+54 \Rightarrow a_{10}=55 [/tex]
[tex]\displaystyle 7).-5,-2,1,4 \\ a_1=-5,~a_2=-2,~a_3=1,~a_4=4 \\ r=-2-(-5) \Rightarrow r=-2+5 \Rightarrow r=3 \\ a_{15}=a_{15-1}+r \Rightarrow a_{15}=a_{14}+r \Rightarrow a_{15}=a_1+14r \Rightarrow \\ \Rightarrow a_{15}=-5+14 \cdot 3 \Rightarrow a_{15}=-5+42 \Rightarrow a_{15}=37 [/tex]
[tex]\displaystyle 8).a_1=3,~r=2,~S_{10}=? \\ S_{10}= \frac{6+9 \cdot 2}{2} \cdot 10 \\ \\ S_{10}= \frac{6+18}{2} \cdot 10 \\ \\ S_{10}= \frac{24}{2} \cdot 10 \\ \\ S_{10}=12 \cdot 10 \\ S_{10}=120 [/tex]
[tex]\displaystyle 9).a_1=-1,~r=4 \\ a_2=a_{2-1}+r \Rightarrow a_2=a_1+r \Rightarrow a_2=-1+4 \Rightarrow a_2=3 \\ a_3=a_{3-1}+r \Rightarrow a_3=a_2+r \Rightarrow a_3=3+4 \Rightarrow a_3=7 \\ a_4= a_{4-1}+r \Rightarrow a_4=a_3+r \Rightarrow a_4=7+4 \Rightarrow a_4=11 \\ a_5=a_{5-1}+r \Rightarrow a_5=a_4+r \Rightarrow a_5=11+4 \Rightarrow a_5=15 \\ a_1 \cdot a_2 \cdot a_3 \cdot a_4 \cdot a_5=-1 \cdot 3 \cdot 7 \cdot 11 \cdot 15=-3465 [/tex]
[tex]\displaystyle 10).x-2,~x,~2x+4 \\ x= \frac{x-2+2x+4}{2} \Rightarrow x= \frac{3x+2}{2} \Rightarrow 2x=3x+2 \Rightarrow 2x-3x=2 \Rightarrow \\ \Rightarrow -x=2 \Rightarrow x=-2[/tex]
[tex]\displaystyle 2).1+3+5+...+21 \\ 21=1+(n-1) \cdot 2 \Rightarrow 21=1+2n-2 \Rightarrow 2n=21-1+2 \Rightarrow \\ \Rightarrow 2n=22 \Rightarrow n= \frac{22}{2} \Rightarrow n=11 \\ S_{11}= \frac{2+10 \cdot 2}{2} \cdot 11 \\ \\ S_{11}= \frac{2+20}{2} \cdot 11 \\ \\ S_{11}= \frac{22}{2} \cdot 11 \\ \\ S_{11}=11 \cdot 11 \\ S_{11}=121 [/tex]
[tex]\displaystyle 3).a_3=5,~a_6=11,~a_9=? \\ a_3=5 \Rightarrow a_{3-1}+r=5 \Rightarrow a_2+r=5 \Rightarrow a_1+2r=5 \Rightarrow a_1=5-2r \\ a_6=11 \Rightarrow a_{6-1}+r=11 \Rightarrow a_5+r=11 \Rightarrow a_1+5r=11 \Rightarrow \\ \Rightarrow 5-2r+5r=11 \Rightarrow 5+3r=11 \Rightarrow 3r=11-5 \Rightarrow 3r=6 \Rightarrow \\ \Rightarrow r= \frac{6}{3} \Rightarrow r=2 \\ a_1=5-2r \Rightarrow a_1=5-2 \cdot 2 \Rightarrow a_1=5-4 \Rightarrow a_1=1 [/tex]
[tex]\displaystyle a_9=a_{9-1}+r \Rightarrow a_9=a_8+r \Rightarrow a_9=a_1+8r \Rightarrow a_9=1+8 \cdot 2 \Rightarrow \\ \Rightarrow a_9=1+16 \Rightarrow a_9=17[/tex]
[tex]\displaystyle 4).1+11+21+31+...+111 \\ 111=1+(n-1) \cdot 10 \Rightarrow 111=1+10n-10 \Rightarrow 10n=111-1+10 \Rightarrow \\ \Rightarrow 10n=120 \Rightarrow n= \frac{120}{10} \Rightarrow n=12 \\ S_{12}= \frac{2+11 \cdot 10}{2} \cdot 12 \\ \\ S_{12}= \frac{2+110}{2} \cdot 12 \\ \\ S_{12}= \frac{112}{2} \cdot 12 \\ \\ S_{12}=56 \cdot 12 \\ S_{12}=672 [/tex]
[tex]\displaystyle 5).a_1=7,~a_2=9 \\ a_2=9 \Rightarrow a_{2-1}+r=9 \Rightarrow a_1+r=9 \Rightarrow 7+r=9 \Rightarrow \\ \Rightarrow r=9-7 \Rightarrow r=2 \\ a_5=a_{5-1}+r \Rightarrow a_5=a_4+r \Rightarrow a_5=a_1+4r \Rightarrow a_5=7+4 \cdot 2 \Rightarrow \\ \Rightarrow a_5=7+8 \Rightarrow a_5=15 [/tex]
[tex]\displaystyle 6).1,7,13,19 \\ a_1=1,~a_2=7,~a_3=13,~a_4=19 \\ r=7-1 \Rightarrow r=6 \\ a_1_0=a_{10-1}+r \Rightarrow a_{10}=a_9+r \Rightarrow a_{10}=a_1+9r \Rightarrow a_{10}=1+9 \cdot 6 \Rightarrow \\ \Rightarrow a_{10}=1+54 \Rightarrow a_{10}=55 [/tex]
[tex]\displaystyle 7).-5,-2,1,4 \\ a_1=-5,~a_2=-2,~a_3=1,~a_4=4 \\ r=-2-(-5) \Rightarrow r=-2+5 \Rightarrow r=3 \\ a_{15}=a_{15-1}+r \Rightarrow a_{15}=a_{14}+r \Rightarrow a_{15}=a_1+14r \Rightarrow \\ \Rightarrow a_{15}=-5+14 \cdot 3 \Rightarrow a_{15}=-5+42 \Rightarrow a_{15}=37 [/tex]
[tex]\displaystyle 8).a_1=3,~r=2,~S_{10}=? \\ S_{10}= \frac{6+9 \cdot 2}{2} \cdot 10 \\ \\ S_{10}= \frac{6+18}{2} \cdot 10 \\ \\ S_{10}= \frac{24}{2} \cdot 10 \\ \\ S_{10}=12 \cdot 10 \\ S_{10}=120 [/tex]
[tex]\displaystyle 9).a_1=-1,~r=4 \\ a_2=a_{2-1}+r \Rightarrow a_2=a_1+r \Rightarrow a_2=-1+4 \Rightarrow a_2=3 \\ a_3=a_{3-1}+r \Rightarrow a_3=a_2+r \Rightarrow a_3=3+4 \Rightarrow a_3=7 \\ a_4= a_{4-1}+r \Rightarrow a_4=a_3+r \Rightarrow a_4=7+4 \Rightarrow a_4=11 \\ a_5=a_{5-1}+r \Rightarrow a_5=a_4+r \Rightarrow a_5=11+4 \Rightarrow a_5=15 \\ a_1 \cdot a_2 \cdot a_3 \cdot a_4 \cdot a_5=-1 \cdot 3 \cdot 7 \cdot 11 \cdot 15=-3465 [/tex]
[tex]\displaystyle 10).x-2,~x,~2x+4 \\ x= \frac{x-2+2x+4}{2} \Rightarrow x= \frac{3x+2}{2} \Rightarrow 2x=3x+2 \Rightarrow 2x-3x=2 \Rightarrow \\ \Rightarrow -x=2 \Rightarrow x=-2[/tex]
Vă mulțumim pentru vizita pe platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, nu ezitați să ne contactați. Așteptăm cu entuziasm să reveniți și vă invităm să ne adăugați la lista de favorite!