👤

Pe mulţimea numerelor reale se defineşte legea de compoziţie asociativă x * y = 3x + 3y - xy - 6 .c) Determinaţi numerele reale x pentru care x *x* ....*x = x (x *x* ....*x de 2014 ori) detaliat va rog.


Răspuns :


x * y = x( 3 - y ) - 3( 3 - y) + 3  = - ( x - 3 )( y - 3 )  + 3 ;
Atunci x * x = - ( x - 3 )^2 + 3   ;
( x * x ) * x =- [ - ( x - 3 )^2  + 3 - 3 ]( x - 3 ) + 3 = ( x - 3 )^3 + 3 ;
Pas cu pas, ajungi la faptul ca, ( x *x* ....*x ) ( de 2014 ori ) = - ( x - 3 )^2014 + 3 ;
Bafta !
[tex]x*y=3x+3y-xy-6=-xy+3x+3y-9+3=\\ =-x(y-3)+3(y-3)+3=-(y-3)(x-3)+3=\\ =-(x-3)(y-3)+3\\ x*y*z=-(x*y-3)(z-3)+3=\\ =-(-(x-3)(y-3)+3-3)(z-3)+3=\\ =(x-3)(y-3)(z-3)+3\\ \text{Punand in cele doua relatii obtinute } y=x, \text{ apoi }z=y=x:\\ x*x=-(x-3)^2+3,\\ x*x*x=(x-3)^3+3 \\ \text{Se poate demonstra prin inductie ca:} \\ x^{(2n)}=-(x-3)^{2n}+3, \\ x^{(2n+1)}=(x-3)^{2n+1}+3, \forall n\in N^* \\ \text{Cum $2014$ estete par,} \\ x^{(2014)}= -(x-3)^{2014}+3=x\Rightarrow -(x-3)^{2014}=x-3\\ \Rightarrow x-3=0 \text{ sau }x-3=-1 \Rightarrow x=3 \text{ sau } x=2[/tex], \\