√(a+√b)=√(a+√a²-b)/2+√(a-√a²-b)/2
√(a-√b)=√(a+√a²-b)/2-√(a-√a²-b)/2
acestea sunt formulele pentru transformarea radicalilor compusi
n=√(30-12√6)-√(4+2√3)- 3√(5-2√6)=√(30-√864)-√(4+√12)- 3√(5-√24)=
√(30-√864)=√[30+√(30²-864)]/2-√[30-√(30²-864)]/2=
=√[30+√(900-864)]/2-√[30-√(900-864)]/2=
=√(30+√36)/2-√(30-√36)/2=
=√(30+6)/2-√(30-6)/2=
=√36/2-√24/2=
=√18-√12=
=3√2-2√3
√(4+√12)=√[4+√(4²-12)]/2+√[4-√(4²-12)]/2=
=√[4+√(16-12)]/2+√[4-√(16-12)]/2=
=√(4+√4)/2+√(4-√4)/2=
=√(4+2)/2+√(4-2)/2=
=√6/2+√2/2=
=√3+1
√(5-√24)=√[5+√(5²-24)]/2-√[5-√(5²-24)]/2=
=√[5+√(25-24)]/2-√[5-√(25-24)]/2=
=√(5+√1)/2-√(5-√1)/2=
=√(5+1)/2-√(5-1)/2=
=√6/2-√2=
=√3-√2
n=√(30-12√6)-√(4+2√3)- 3√(5-2√6)=√(30-√864)-√(4+√12)- 3√(5-√24)=
=3√2-2√3-√3-1-3(√3-√2)=
=3√2-2√3-√3-1-3√3+3√2=
=6√2-6√3-1