👤

Fie expresia :
E(x) = [tex] (\frac{1}{ x^{2} -x} - \frac{1}{ x^{2} +x} - \frac{x+3}{1- x^{2} }) * \frac{ x^{3}-4 x^{2} +3x}{2 x^{2} +5x+2} [/tex] , unde x ∈ R - {-2,-1,0,1, -[tex] \frac{1}{2} [/tex]}
a). Aratati ca E(x) = [tex] \frac{x-3}{2x+1} [/tex], pentru orice x ∈ R - {-2,-1,0,1, -[tex] \frac{1}{2} [/tex]}
b). Determinati n ∈ Z astfel incat E(n) ∈ Z.