Gf intersecteaza Ox -ordonata 0
2x+3=0
x=-3/2
A(-3/2,0)
Gf intersecteaza Oy-abscisa 0
x=0 f(0)=3
B(0,3)
In tr AOB ducem perpendiculara OD pe AB
Cu T.Pit gasim AB=[tex] \sqrt{ OA^{2} + OB^{2} }= \frac{3 \sqrt{5} }{2} \\ OD= \frac{OA\cdot OB}{AB}=3\cdot \frac{3}{2}\cdot \frac{2}{3 \sqrt5} } = \frac{3}{ \sqrt{5} } = \frac{3 \sqrt{5} }{5} [/tex]