👤

Sa se determine numarul real x, stiind ca numerele 5-x, x+7 si 3x+11 sunt termeni consecutivi ai unei progresii geometrice


Răspuns :

[tex](x+7)^{2} =(5-x)*(3x+11) x^{2} +14x+49=15x+55-3x^{2}-11x x^{2} +14x+49-15x-55+3x^{2}+11x=0 4x^{2}+10x-6=0 a=4 b=10 c=-6 delta= 10^{2}-4*4*(-6) =196 x_{1}= \frac{-10+14}{8}= \frac{4}{8} = \frac{1}{2} x_{2}= \frac{-10-14}{8}= \frac{-24}{8}=-3 [/tex]