Răspuns :
[tex] \frac{n}{4} -1 \leq [ \frac{n}{4}] \leq \frac{xn}{4}
\lim_{n \to \infty} ( \frac{n}{4}-1) \leq \lim_{n \to \infty} [ \frac{n}{4}] \leq \lim_{n \to \infty} \leq \lim_{n \to \infty} \frac{n}{4} [/tex] |:n (imparti fiecare chestie la n )
[tex] \lim_{n \to \infty} \frac{n-4}{4n} \leq \lim_{n \to \infty} [\frac{n}{4}]* \frac{1}{n} \leq \lim_{n \to \infty} \frac{n}{4n} [/tex]
In cazul primei limite, observi ca ai infinit/infinit, asa ca aplici L'Hospital si obtii 1/4.
In cazul ultimei limite, se reduce n cu n si ramane 1/4.
Daca prima si ultima tind la 1/4, inseamna ca si [n/4]/n tinde tot la 1/4.
[tex] \lim_{n \to \infty} \frac{n-4}{4n} \leq \lim_{n \to \infty} [\frac{n}{4}]* \frac{1}{n} \leq \lim_{n \to \infty} \frac{n}{4n} [/tex]
In cazul primei limite, observi ca ai infinit/infinit, asa ca aplici L'Hospital si obtii 1/4.
In cazul ultimei limite, se reduce n cu n si ramane 1/4.
Daca prima si ultima tind la 1/4, inseamna ca si [n/4]/n tinde tot la 1/4.
Vă mulțumim pentru vizita pe platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, nu ezitați să ne contactați. Așteptăm cu entuziasm să reveniți și vă invităm să ne adăugați la lista de favorite!