👤

M1(x,x+1) si M2(1,0). Sa se determine x astfel incat M1M2=2√2

Dau raspuns cel mai bun. Va rog! Urgent!


Răspuns :

M1M2=[tex] \sqrt{(x_{2}-x_{1})^{2} + (y_{2}-y_{1})^{2}} [/tex]= [tex] \sqrt{(1-x)^{2}+[0-(x+1)^{2}] } [/tex]

=> M1M2= [tex] \sqrt{(1-x)^{2}+[0-(x+1)^{2}] } = [/tex] 2√2 

=> M1M2= [tex] \sqrt{1+ x^{2} -2x- x^{2} -2x-1} =[/tex] 2√2

=>M1M2=[tex] \sqrt{-4x} =[/tex] 2√2 [tex] /^{2} [/tex] => [tex]8=-4x =\ \textgreater \ x=-2[/tex]