Trebuie sa demonstram ca :
(x+1)ln(x+1)>arctgx, pt x>0 ⇔(x+1)ln(x+1)-arctgx>0
Definim functia f:(0,+∞)->R, f(x) =(x+1)ln(x+1)-arctgx.
f'(x)=[(x+1)ln(x+1)]'-[arctgx]'=ln(x+1)+1 -1/(x²+1)
f'(x)=ln(x+1)+x²/(x²+1)
x |0________________________________+∞
f'(x)|0+++++++++++++++++++++++++++++
Deoarece f'(x)>0=> f stric crescatoare pe (0,+∞).
Pentru x>0=> f(x)>f(0)=>(x+1)ln(x+1)-arctgx>0=>(x+1)ln(x+1)>arctgx