x=[tex] \frac{1}{√2-1} [/tex]+[tex] \frac{1}{√2+1} [/tex]⇒x=[tex] \frac{√2+1}{2-1} [/tex]+[tex] \frac{√2-1}{2-1} [/tex]⇒x=[tex] \frac{√2+1+√2-1}{1} [/tex]⇒x=2√2
y=√2(√2+[tex] \frac{1}{√2} [/tex]⇒y=√2×[tex] \frac{2+1}{√2} [/tex]⇒y=3
a)x*(√8-√2)=4
2√2*(2√2-√2)=2√2*√2=2×2=4
b)x²-y
(2√2)²-3=4×2-3=8-3=5
5)E(x)=x⁴+x²+1+2x³+2x²+2x-x⁴-2x³-x²-x²
E(x)=x²+2x+1
E(x)=(x+1)²
E(n)=(n+1)²⇒E(n)-patrat perfect