a) √2 (√2 - 1) = 2 - √2
f(2-√2) = 4 -2√2 +1 = 5 - 2√2
b) S = f(1) + f(2) + f(3) +......+f(n) - 2n = 3 + 5 + 7 +.......+2n +1 - 2n =
= (2·1+1) +(2·2+1) +(2·3 +1) +.....+(2·n +1) - 2n = 1·n +2(1+2+3+.....+n) - 2n =
= n +2·n(n+1)/2 -2n = n +n² +n -2n = n²
⇒ √S = √(n²)² = n ∈N*