👤

Aratati ca numarul a=(x*x²*x³*...*x la puterea 20) : (x*x³*x la puterea 5*...* x la puterea 19 este p.p. (*=ori)

Răspuns :

a=[tex](x * x^{2} * x^{3} *...* x^{20} ):(x* x^{3} * x^{5} *...* x^{19} )[/tex]=

=[tex] x^{1+2+3+...+20} : x^{1+3+5+...+19} [/tex] Folosim suma Gauss si formula sumei numerelor impare consecutive:

SG=1+2+3+...+n=n*(n+1):2

SI=1+3+5+...+(2k-1)=k*k

a=[tex] x^{20*21:2} : x^{10*10} [/tex]=

=[tex] x^{10*21} : x^{10*10} [/tex]=

=[tex] x^{10*21-10*10} [/tex]=

=[tex] x^{10*(21-10)} [/tex]=

=[tex] x^{10*11} [/tex]=

=[tex] x^{11*5*2} [/tex]=

=[tex] x^{55*2} [/tex]=

[tex] ( x^{55} )^{2} [/tex] care este patrat perfect.