Răspuns :
Restul impartirii unui numar la 5 poate fi 0,1,2,3,4. Regula este r< I.
Cred ca se refera la ultima cifra a patratelor numerelor
U(1^2)=1, U(2^2)=4, U(3^2)=9, U(4^2)=6. U(5^2)=5, U(6^2)=6. U(7^2)=9, U(8^2)=4, U(9^2)=1.
⇒ Putem alege oricare 2 numere patrate perfecte a caror diferenta se termina in 0 (deci diferenta este divizibila cu 5).
De exemplu U(1^2)-U(9^2)=0 ⇒ Rezulta ca orice scazand patratele oricaror numere care se termina in 1 respectiv 9, diferenta va fi divizibila cu 5.
Idem U(2^2)-U(8^2)=0, U(3^2)-U(7^2)=0, U(4^2)-U(6^2)=0, U(5^2)-U(5^2)=0. Sper sa fie bine! :)
Cred ca se refera la ultima cifra a patratelor numerelor
U(1^2)=1, U(2^2)=4, U(3^2)=9, U(4^2)=6. U(5^2)=5, U(6^2)=6. U(7^2)=9, U(8^2)=4, U(9^2)=1.
⇒ Putem alege oricare 2 numere patrate perfecte a caror diferenta se termina in 0 (deci diferenta este divizibila cu 5).
De exemplu U(1^2)-U(9^2)=0 ⇒ Rezulta ca orice scazand patratele oricaror numere care se termina in 1 respectiv 9, diferenta va fi divizibila cu 5.
Idem U(2^2)-U(8^2)=0, U(3^2)-U(7^2)=0, U(4^2)-U(6^2)=0, U(5^2)-U(5^2)=0. Sper sa fie bine! :)
Vă mulțumim pentru vizita pe platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, nu ezitați să ne contactați. Așteptăm cu entuziasm să reveniți și vă invităm să ne adăugați la lista de favorite!