Răspuns :
Hey eu sunt a opta.
[tex] \left \{ {{3x-2y=-1} \atop {x+y=3}} \right. [/tex]
Luăm separat cele două ecuaţii:
3x-2y=-1
x+y=3⇒y=3-x Înlocuimîn prima:
3x-2(3-x)=-1
3x-6+2x=-1
3x+2x=-1+6
5x=5
x=[tex] \frac{5}{5} [/tex]
x=1⇒y=3-1=2
Acelaşi lucru se face şi la sistem numai că trebuie să pui acoladă şi semnul echivalent (⇔) între ele.
[tex] \left \{ {5x+3y=18} \atop {2x-3y=3}} \right. [/tex] Luăm separat:
5x+3y=18
2x-3y=3 Ce am folosit mai sus se numeşte tehnica substituţiei este atunci când scoţi o necunoscută dintr-una din ecuaţii şi apoi o introduci în cealaltă.
Acum vom folosi tehnica reducerii este atunci când ai în prima ecuaţie un număr pozitiv sau negativ iar în a doua ecuaţie a sistemului ai acelaşi număr numai cu semn diferit. În acest caz este mai la îndemână să aplicăm tehnica reducerii. +3y şi -3y se reduc rămânănd:
5x+2x=18+3
7x=21
x=[tex] \frac{21}{7} [/tex]
x=3 Înlocuim într-una din ecuaţii şi aflăm y-ul:
5 ori 3+3y=18
15+3y=18
3y=18-15
3y=3
y=[tex] \frac{3}{3} [/tex]
y=1
Sper că te-am ajutat! :)
[tex] \left \{ {{3x-2y=-1} \atop {x+y=3}} \right. [/tex]
Luăm separat cele două ecuaţii:
3x-2y=-1
x+y=3⇒y=3-x Înlocuimîn prima:
3x-2(3-x)=-1
3x-6+2x=-1
3x+2x=-1+6
5x=5
x=[tex] \frac{5}{5} [/tex]
x=1⇒y=3-1=2
Acelaşi lucru se face şi la sistem numai că trebuie să pui acoladă şi semnul echivalent (⇔) între ele.
[tex] \left \{ {5x+3y=18} \atop {2x-3y=3}} \right. [/tex] Luăm separat:
5x+3y=18
2x-3y=3 Ce am folosit mai sus se numeşte tehnica substituţiei este atunci când scoţi o necunoscută dintr-una din ecuaţii şi apoi o introduci în cealaltă.
Acum vom folosi tehnica reducerii este atunci când ai în prima ecuaţie un număr pozitiv sau negativ iar în a doua ecuaţie a sistemului ai acelaşi număr numai cu semn diferit. În acest caz este mai la îndemână să aplicăm tehnica reducerii. +3y şi -3y se reduc rămânănd:
5x+2x=18+3
7x=21
x=[tex] \frac{21}{7} [/tex]
x=3 Înlocuim într-una din ecuaţii şi aflăm y-ul:
5 ori 3+3y=18
15+3y=18
3y=18-15
3y=3
y=[tex] \frac{3}{3} [/tex]
y=1
Sper că te-am ajutat! :)
Vă mulțumim pentru vizita pe platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, nu ezitați să ne contactați. Așteptăm cu entuziasm să reveniți și vă invităm să ne adăugați la lista de favorite!