👤

Descompune in factori:  2x² - 7x + 3

Răspuns :

[tex]2x^2-7x+3 \\\\ a=2 \\ b=-7 \\ c=3 \\\\ \Delta= (-7)^2-4*2*3= 49-24\to \boxed{25} \\\\ x_1; x_2 = \frac{-(-7)+ / - \sqrt{25}}{2*2}= \frac{7+/-5}{4} \\\\ x_1=\frac{7+5}{4}=\frac{12}{4}\to\boxed{\boxed{3}} \\\\ x_2=\frac{7-5}{4}=\frac{2}{4}\to\boxed{\boxed{\frac{1}{2}}} \\\\\\ 2x^2-7x+3= 2(x-3)(x-\frac{1}{2}) \\\\\\ \boxed{2x^2-7x+3=(x-3)(2x-1)}[/tex]
Δ=[tex] b^{2} [/tex]-4·a ·c=49-24=25,unde Δ=determinantul ecuatiei
x1=[tex] \frac{-b- \sqrt{Δ} }{2·a} [/tex]=[tex] \frac{7-5}{4} [/tex]=[tex] \frac{1}{2} [/tex]
x2 =[tex] \frac{-b+\sqrt{Δ} }{2·a} [/tex]= [tex] \frac{7+5}{4} [/tex]= [tex] \frac{12}{4} [/tex]=3
2[tex] x^{2} [/tex]-7x+3=a(x-x1)(x-x2)=2(x-[tex] \frac{1}{2} [/tex])(x-4)=(2x-1)(x-3)