Răspuns :
cateta 1 = x, cateta 2=y, ipotenuza = radical din suma x la 2+ y la 2(folosim t lui Pitagora in triunghiul dreptunghic) si x+y+ radical din x la 2+ y la2 =132 (1)
Xla 2+y la 2+(radical din x la 2+y la 2)=6050
2(x la 2+y la 2)=6050 , x la 2+ y la 2 =3025 (2) , 3025= 55 la 2
Din (1) si (2) x+y=132-55=77
(x+y) la 2 = x la 2+ 2xy+ y la 2 formula de calcul prescurtat Se fac inlocuirile in formula
77 la 2 = 3025+ 2xy rezulta 2xy=77 la 2 -55 la 2= 2xy , (77+55)(77-55)=2xy
132*22=2xy de unde xy =132*11=1452
Formam ecuatia de gradul doi in z folosin suma S si produsul P
Zl a 2- Sz+p= 0 , S=77, P=1452 se rezolva ecuatia de gradul doi si se obtin nr 33, respectiv 44
Xla 2+y la 2+(radical din x la 2+y la 2)=6050
2(x la 2+y la 2)=6050 , x la 2+ y la 2 =3025 (2) , 3025= 55 la 2
Din (1) si (2) x+y=132-55=77
(x+y) la 2 = x la 2+ 2xy+ y la 2 formula de calcul prescurtat Se fac inlocuirile in formula
77 la 2 = 3025+ 2xy rezulta 2xy=77 la 2 -55 la 2= 2xy , (77+55)(77-55)=2xy
132*22=2xy de unde xy =132*11=1452
Formam ecuatia de gradul doi in z folosin suma S si produsul P
Zl a 2- Sz+p= 0 , S=77, P=1452 se rezolva ecuatia de gradul doi si se obtin nr 33, respectiv 44
Vă mulțumim pentru vizita pe platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, nu ezitați să ne contactați. Așteptăm cu entuziasm să reveniți și vă invităm să ne adăugați la lista de favorite!