👤

aratati ca namarul n=27^9 × 32^11 ÷ 2 - 16^6 × 2 × 6^27 este patrat perfect

Răspuns :

[tex]n=( 3^{3} ) ^{9} *( 2^{5}) ^{11} :2-(2 ^{4} ) ^{6} *2*(2*3) ^{27} [/tex]
[tex]n=3^{27} *2^{55} :2-2 ^{24} *2*2 ^{27} *3^{27} [/tex]
[tex]n=3^{27} *2^{55-1} -2 ^{24+1+27} *3^{27}[/tex]
[tex]n=3^{27} *2^{55-1} -2 ^{24+1+27} *3^{27}[/tex]
[tex]n=3^{27} *2^{54} -2 ^{52} *3^{27}[/tex]
[tex]n=3^{27} *2^{52} ( 2^{2} -1)[/tex]
[tex]n=3^{27} *2^{52} ( 4 -1)[/tex]
[tex]n=3^{27} *2^{52} *3[/tex]
[tex]n=3^{27+1} *2^{52} [/tex]
[tex]n=3^{28} *2^{52}[/tex]
[tex]n=3^{28} *2^{52}[/tex]
[tex]n=3^{2*14} *2^{2*26}[/tex]
Se numeşte pătrat perfect orice număr natural care se poate scrie ca puterea a doua a altui număr natural.

a pătrat perfect 
[tex] a=k^{2} [/tex]

[tex]n=3^{2*14} *2^{2*26}[/tex] ⇒ n este pătrat perfect