Răspuns :
In general suma de numere impare este patrat perfect. Iata cazul general:
1=2*1-1
3=2*2-1
5=2*3-1
....
n=2*k-1
1+3+5+....+(2*k-1)=2*(1+2+3+...+k)-1*k=2*k*(k+1)/2-k=k*(k+1)-k=k*k+k-k=k*k, adica patrat perfect.
In cazul nostru, 2011=2*1006-1, deci k=1006
Aplici in formula de mai sus si gata rezolvarea.
1=2*1-1
3=2*2-1
5=2*3-1
....
n=2*k-1
1+3+5+....+(2*k-1)=2*(1+2+3+...+k)-1*k=2*k*(k+1)/2-k=k*(k+1)-k=k*k+k-k=k*k, adica patrat perfect.
In cazul nostru, 2011=2*1006-1, deci k=1006
Aplici in formula de mai sus si gata rezolvarea.
1= 1 +2·0
3 =1 +2·1
5 =1+2·2
7= 1+2·3
.............
2011 = 1+2·1005 ⇒ b= 1·1006 +2(1+2+3+......+1005) = 1006 +2·1005·1006/2 =
= 1006 (1 +1005) =1006² =p.p.
3 =1 +2·1
5 =1+2·2
7= 1+2·3
.............
2011 = 1+2·1005 ⇒ b= 1·1006 +2(1+2+3+......+1005) = 1006 +2·1005·1006/2 =
= 1006 (1 +1005) =1006² =p.p.
Vă mulțumim pentru vizita pe platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, nu ezitați să ne contactați. Așteptăm cu entuziasm să reveniți și vă invităm să ne adăugați la lista de favorite!