👤

cum calculez z la puterea 4 = i ? numere complexe

Răspuns :

Sriem sub forma trigonometrica: [tex]z=r(\cos\alpha+i\sin\alpha)[/tex]

Acum, evident ca [tex]r=1[/tex] .

Atunci avem:  [tex]z^4=\cos 4\alpha+i\sin 4\alpha[/tex]

Iar ecuatia noastra este: [tex]\cos 4\alpha+i\sin 4\alpha=i[/tex]

De unde rezulta:

[tex]\cos 4\alpha=0\\ \sin 4\alpha=1[/tex]

De unde ne dam seama imediat ca:

[tex]4\alpha=\frac{\pi}{2}\\ \\ \\ \alpha=\dfrac{\pi}{8}.[/tex]

Asa ca solutia va fi:

[tex]z=\cos\frac{\pi}{8}+i\sin\frac{\pi}{8}[/tex]