Ecuatia generala e [tex]x=x_m\sin(\omega t)[/tex]
[tex]F=kx_m\\\ \\ E=\frac{1}{2}kx_m^2\\ \\ E=\frac{1}{2}Fx_m\\ \\ \\ x_m=\dfrac{2E}{F}[/tex]
Aici, [tex]x_m[/tex] este alungirea maxima.
Aflam k:
[tex]k=\dfrac{F}{x_m}=\dfrac{F^2}{2E}[/tex]
Aflam perioada:
[tex]T=2\pi\sqrt{\dfrac{m}{k}}=2\pi\sqrt{\dfrac{2Em}{F^2}}=\dfrac{2\pi\sqrt{2Em}}{F}.[/tex]
Aflam omega:
[tex]\omega=\dfrac{2\pi}{T}=\dfrac{F}{\sqrt{2Em}}[/tex]
In sfarsit, ecuatia generala va fi:
[tex]x=\dfrac{2E}{F}\sin\left(\dfrac{F}{\sqrt{2Em}}t\right)[/tex]