👤

Sa se determine x € Z astfel incat sa existe lg(x^2 -2x-8).

Răspuns :

[log(x²-2x-8)]/[log(10)]=0
log(x²-2x-8)=0
x²-2x-8=1
x²-2x=9
x²-2x+1=10
(x-1)²=10
x-1=√10 sau x-1=-√10
x=1+√10 sau x=1-√10
[tex]lg(x^2-2x-8)=0 [/tex]

Conditii de existenta

[tex]x^2-2x-8[/tex]>0

[tex]x^2-2x-8=0 a=1 b=-2 c=-8 delta=b^2-4ac = (-2)^2-4*1*(-8)=4+32=36 x_{1}= \frac{2+6}{2}= \frac{8}{2}=4 [/tex]

[tex] x_{2}= \frac{2-6}{2}= \frac{-4}{2}=-2 [/tex]

[tex]lg(x^2-2x-8)=0 10^0=x^2-2x-8 1=x^2-2x-8 1-x^2+2x+8=0 -x^2+2x+9=0 /(-1) x^2-2x-9=0 a=1 b=-2 c=-9 delta=b^2-4ac = (-2)^2-4*1*(-9)=4+36=40 [/tex]

[tex]x1= \frac{2+2 \sqrt{10} }{2}= \frac{2(1+ \sqrt{10} )}{2}=1+ \sqrt{10} x_{2}= \frac{2-2 \sqrt{10} }{2}= \frac{2(1- \sqrt{10)} }{2} =1- \sqrt{10} [/tex]






Vezi imaginea ALESYO