Răspuns :
Calculezi [tex]A^{2} , A^3, [/tex] etc până găseşti o regulă şi apoi o demonstrezi prin inducţie.
[tex]a) \, A = \left(\begin{array}{ccc}1&i\\0&1\end{array}\right) \\ \\ A^2 = \left(\begin{array}{ccc}1&i\\0&1\end{array}\right)\left(\begin{array}{ccc}1&i\\0&1\end{array}\right) = \left(\begin{array}{ccc}1&2i\\0&1\end{array}\right) \\ \\ A^3 = A^2 \cdot A = \left(\begin{array}{ccc}1&2i\\0&1\end{array}\right)\left(\begin{array}{ccc}1&i\\0&1\end{array}\right)=\left(\begin{array}{ccc}1&3i\\0&1\end{array}\right).[/tex]
Observăm că [tex]A^n[/tex] are forma [tex]\left(\begin{array}{ccc}1&n \cdot i\\0&1\end{array}\right)[/tex].
Presupunem că [tex]A^k=\left(\begin{array}{ccc}1&k \cdot i\\0&1\end{array}\right)[/tex] şi demonstrăm că [tex]A^{k+1} = \left(\begin{array}{ccc}1&(k+1) \cdot i\\0&1\end{array}\right)[/tex]. Avem: [tex]A^{k+1} = A^k \cdot A = \left(\begin{array}{ccc}1&k\cdot i\\0&1\end{array}\right) \cdot \left(\begin{array}{ccc}1&i\\0&1\end{array}\right) = \left(\begin{array}{ccc}1&i+k \cdot i\\0&1\end{array}\right) \\ \\ = \left(\begin{array}{ccc}1&(k+1)i\\0&1\end{array}\right).[/tex].
Deci, conform principiului inducţiei matematice, [tex]A^n = \left(\begin{array}{ccc}1&n \cdot i\\0&1\end{array}\right).[/tex]
La b aplicăm altă regulă (binomul lui Newton):
[tex]A= \left(\begin{array}{ccc}1&1&1\\0&1&1\\0&0&1\end{array}\right) = \underset{I_3}{\underbrace{ \left(\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right)}} + \underset{B}{\underbrace{ \left(\begin{array}{ccc}0&1&1\\0&0&1\\0&0&0\end{array}\right)}} = I_3 + B.[/tex]
[tex]B = \left(\begin{array}{ccc}0&1&1\\0&0&1\\0&0&0\end{array}\right) \\ \\ B^2 = \left(\begin{array}{ccc}0&1&1\\0&0&1\\0&0&0\end{array}\right) \left(\begin{array}{ccc}0&1&1\\0&0&1\\0&0&0\end{array}\right)= \left(\begin{array}{ccc}0&0&1\\0&0&0\\0&0&0\end{array}\right) \\ \\ B^3 = \left(\begin{array}{ccc}0&0&1\\0&0&0\\0&0&0\end{array}\right)\left(\begin{array}{ccc}0&1&1\\0&0&1\\0&0&0\end{array}\right) = \left(\begin{array}{ccc}0&0&0\\0&0&0\\0&0&0\end{array}\right) = O_3 [/tex]
[tex]\Rightarrow B^p=O_3, \forall p \geq 3.[/tex]
[tex]A^n = (I_3 + B)^n = C_n^0 I_3^n + C_n^1I_3^{n-1}B+C_n^2 I_3^{n-2}B^2 \\ \\ A^n = I_3 + n \cdot I_3 \cdot B + \frac{n(n-1)}{2}B^2 \\ \\ A^n = I_3 + nB + \frac{n(n-1)}{2}B^2 \\ \\ A^n = \left(\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right) + \left(\begin{array}{ccc}0&n&n\\0&0&n\\0&0&0\end{array}\right) + \left(\begin{array}{ccc}0&0&\frac{n(n-1)}{2}\\0&0&0\\0&0&0\end{array}\right) \\ \\ \Rightarrow A^n = \left(\begin{array}{ccc}1&n&n+\frac{n(n-1)}{2}\\0&1&n\\0&0&1\end{array}\right) [/tex]
Posibil să fi greşit pe undeva..
[tex]a) \, A = \left(\begin{array}{ccc}1&i\\0&1\end{array}\right) \\ \\ A^2 = \left(\begin{array}{ccc}1&i\\0&1\end{array}\right)\left(\begin{array}{ccc}1&i\\0&1\end{array}\right) = \left(\begin{array}{ccc}1&2i\\0&1\end{array}\right) \\ \\ A^3 = A^2 \cdot A = \left(\begin{array}{ccc}1&2i\\0&1\end{array}\right)\left(\begin{array}{ccc}1&i\\0&1\end{array}\right)=\left(\begin{array}{ccc}1&3i\\0&1\end{array}\right).[/tex]
Observăm că [tex]A^n[/tex] are forma [tex]\left(\begin{array}{ccc}1&n \cdot i\\0&1\end{array}\right)[/tex].
Presupunem că [tex]A^k=\left(\begin{array}{ccc}1&k \cdot i\\0&1\end{array}\right)[/tex] şi demonstrăm că [tex]A^{k+1} = \left(\begin{array}{ccc}1&(k+1) \cdot i\\0&1\end{array}\right)[/tex]. Avem: [tex]A^{k+1} = A^k \cdot A = \left(\begin{array}{ccc}1&k\cdot i\\0&1\end{array}\right) \cdot \left(\begin{array}{ccc}1&i\\0&1\end{array}\right) = \left(\begin{array}{ccc}1&i+k \cdot i\\0&1\end{array}\right) \\ \\ = \left(\begin{array}{ccc}1&(k+1)i\\0&1\end{array}\right).[/tex].
Deci, conform principiului inducţiei matematice, [tex]A^n = \left(\begin{array}{ccc}1&n \cdot i\\0&1\end{array}\right).[/tex]
La b aplicăm altă regulă (binomul lui Newton):
[tex]A= \left(\begin{array}{ccc}1&1&1\\0&1&1\\0&0&1\end{array}\right) = \underset{I_3}{\underbrace{ \left(\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right)}} + \underset{B}{\underbrace{ \left(\begin{array}{ccc}0&1&1\\0&0&1\\0&0&0\end{array}\right)}} = I_3 + B.[/tex]
[tex]B = \left(\begin{array}{ccc}0&1&1\\0&0&1\\0&0&0\end{array}\right) \\ \\ B^2 = \left(\begin{array}{ccc}0&1&1\\0&0&1\\0&0&0\end{array}\right) \left(\begin{array}{ccc}0&1&1\\0&0&1\\0&0&0\end{array}\right)= \left(\begin{array}{ccc}0&0&1\\0&0&0\\0&0&0\end{array}\right) \\ \\ B^3 = \left(\begin{array}{ccc}0&0&1\\0&0&0\\0&0&0\end{array}\right)\left(\begin{array}{ccc}0&1&1\\0&0&1\\0&0&0\end{array}\right) = \left(\begin{array}{ccc}0&0&0\\0&0&0\\0&0&0\end{array}\right) = O_3 [/tex]
[tex]\Rightarrow B^p=O_3, \forall p \geq 3.[/tex]
[tex]A^n = (I_3 + B)^n = C_n^0 I_3^n + C_n^1I_3^{n-1}B+C_n^2 I_3^{n-2}B^2 \\ \\ A^n = I_3 + n \cdot I_3 \cdot B + \frac{n(n-1)}{2}B^2 \\ \\ A^n = I_3 + nB + \frac{n(n-1)}{2}B^2 \\ \\ A^n = \left(\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right) + \left(\begin{array}{ccc}0&n&n\\0&0&n\\0&0&0\end{array}\right) + \left(\begin{array}{ccc}0&0&\frac{n(n-1)}{2}\\0&0&0\\0&0&0\end{array}\right) \\ \\ \Rightarrow A^n = \left(\begin{array}{ccc}1&n&n+\frac{n(n-1)}{2}\\0&1&n\\0&0&1\end{array}\right) [/tex]
Posibil să fi greşit pe undeva..
Vă mulțumim pentru vizita pe platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, nu ezitați să ne contactați. Așteptăm cu entuziasm să reveniți și vă invităm să ne adăugați la lista de favorite!