👤

să se determine m €R astfel încât x^2-(m-3)x+m-3>0, pentru orice x real

Răspuns :

x^2-(m-3)x+m-3>0
Deoarece coeficientul lui x
² este pozitiv (1 > 0), functia x^2-(m-3)x+m-3 este pozitiva in afara solutiilor si negativa intre solutii.
Pentru a fi pozitiva pentru orice x ∈ R trebue sa se indeplineasca unrmatoarele conditii:
Graficul functiei x^2-(m-3)x+m-3 trebuie sa nu intersecteze axa Ox
=> Ecuatia x^2-(m-3)x+m-3 = 0  trebuie sa nu aiba solutii reale
=> Δ < 0
=> (m-3)² - 4(m-3) < 0
Rezolvam ecuatia
m² - 6m + 9 - 4m + 12 = 0
m² - 10m + 21 = 0
m² - 3m - 7m + 21 = 0
m(m - 3) -7(m - 3) = 0
(m - 3)(m - 7) = 0

m1 = 3
m2 = 7
=> Δ < 0  daca m ∈ (3, 7)

=> x^2 - (m - 3)x + m - 3 > 0 daca m ∈ (3, 7)


Vă mulțumim pentru vizita pe platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, nu ezitați să ne contactați. Așteptăm cu entuziasm să reveniți și vă invităm să ne adăugați la lista de favorite!


Viz Lesson: Alte intrebari