Răspuns :
intr-un triunghi isoscel inaltimea din varf(deoarece unghiurile de baza sunt congruente)
este si inaltime si bisectoare
deci ∧GFB≡∧BFE
In ΔHFB,EA||FB si FB si EA intersectate de HF(FB_|_GH si EA_|_ BH)
∧BFH≡∧AEH dar si ∧GFB≡∧BFH si deci ∧GFB≡∧AEH
daca nu intelegi intreaba
a doua problem
daca ΔFCG isoscel ⇒∧FGC≡∧GFC
dar FG||BE si intersectate de FB si GE se formeaza perechi de unghiuri congruenet
∧FGC≡∧GEB si ∧GFC≡∧FBE si din ∧FGC≡∧CFG ⇒
ΔBEC isoscel
ΔFGH-isoscel?
deoarece ΔFCG-isoscel si ΔCBE isoscel⇒FC+CB=GC+CE⇒FB=GE ,una fiind inaltime si ceallta fiind bisectoare inseamna ca triunghiul FGH este echilateral
este si inaltime si bisectoare
deci ∧GFB≡∧BFE
In ΔHFB,EA||FB si FB si EA intersectate de HF(FB_|_GH si EA_|_ BH)
∧BFH≡∧AEH dar si ∧GFB≡∧BFH si deci ∧GFB≡∧AEH
daca nu intelegi intreaba
a doua problem
daca ΔFCG isoscel ⇒∧FGC≡∧GFC
dar FG||BE si intersectate de FB si GE se formeaza perechi de unghiuri congruenet
∧FGC≡∧GEB si ∧GFC≡∧FBE si din ∧FGC≡∧CFG ⇒
ΔBEC isoscel
ΔFGH-isoscel?
deoarece ΔFCG-isoscel si ΔCBE isoscel⇒FC+CB=GC+CE⇒FB=GE ,una fiind inaltime si ceallta fiind bisectoare inseamna ca triunghiul FGH este echilateral
Vă mulțumim pentru vizita pe platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, nu ezitați să ne contactați. Așteptăm cu entuziasm să reveniți și vă invităm să ne adăugați la lista de favorite!