RÄspuns :
a = 5aā“bāµ/ā¶cĀ³ ; fie un log ( alegem ) : logā x ; sau logāx sau lnx sau lgx
aleg lna = ln(5aā“bāµ/ā¶cĀ³ ) = cu prop. log
lna = ln5 + lnaā“ + lnbāµ/ā¶ + lncĀ³
lna = ln5 + 4Ā·lna + 5 /6Ā·lnb + 3Ā·lnc
sau , daca alegem lg , ex . lga = lg5 + 4lga +5/6lgb + 3lgc
b. lgb = lg( 8aĀ²bā“) :3xāy = lg8 + lgaĀ² + lgbā“ - lg3 - lgx - lgyĀ¹/Ā²
= lg8 + 2lga + 4lgb - lg3 -lgx - 1 /2Ā· lgy
c. lgc = lg(aĀ²Ā· ā“ābĀ²) ; (bĀ²āa) =
= 2lga + 2 /4Ā·lgb - 2lgb - 1 /3Ā·lga
= 5/3Ā·lga - 3 /2 Ā·lgb
1' conditie 4xĀ² + 11x - 3 >0 ; Ī = 169 ; āĪ=13
xā = -3 ; xā = 1 /4
log exista daca xā ( - ā ; -3) U ( 1 /4 ; +ā )
2' conditie pentru baza : ( x -1) / ( x +1) > 0 daca xā (-ā ; -1) U ( 1 ; +ā)
baza (x -1 ) / ( x +1) ā 1
2xĀ² +x - 3 > 0 ; Ī = 25 ; āĪ=5
xā = - 6 /4= - 3 /2
xā =1
daca x ā ( -ā ; -3 /2 ) U ( 1 ; +ā )
solutia finala = intersectia intervalelor calculate
S final = ( -ā ; -3/2 ) U ( 1 ; +ā )
aleg lna = ln(5aā“bāµ/ā¶cĀ³ ) = cu prop. log
lna = ln5 + lnaā“ + lnbāµ/ā¶ + lncĀ³
lna = ln5 + 4Ā·lna + 5 /6Ā·lnb + 3Ā·lnc
sau , daca alegem lg , ex . lga = lg5 + 4lga +5/6lgb + 3lgc
b. lgb = lg( 8aĀ²bā“) :3xāy = lg8 + lgaĀ² + lgbā“ - lg3 - lgx - lgyĀ¹/Ā²
= lg8 + 2lga + 4lgb - lg3 -lgx - 1 /2Ā· lgy
c. lgc = lg(aĀ²Ā· ā“ābĀ²) ; (bĀ²āa) =
= 2lga + 2 /4Ā·lgb - 2lgb - 1 /3Ā·lga
= 5/3Ā·lga - 3 /2 Ā·lgb
1' conditie 4xĀ² + 11x - 3 >0 ; Ī = 169 ; āĪ=13
xā = -3 ; xā = 1 /4
log exista daca xā ( - ā ; -3) U ( 1 /4 ; +ā )
2' conditie pentru baza : ( x -1) / ( x +1) > 0 daca xā (-ā ; -1) U ( 1 ; +ā)
baza (x -1 ) / ( x +1) ā 1
2xĀ² +x - 3 > 0 ; Ī = 25 ; āĪ=5
xā = - 6 /4= - 3 /2
xā =1
daca x ā ( -ā ; -3 /2 ) U ( 1 ; +ā )
solutia finala = intersectia intervalelor calculate
S final = ( -ā ; -3/2 ) U ( 1 ; +ā )
VÄ mulČumim pentru vizita pe platforma noastrÄ dedicatÄ MatematicÄ. SperÄm cÄ informaČiile prezentate v-au fost utile. DacÄ aveČi Ć®ntrebÄri sau aveČi nevoie de suport suplimentar, nu ezitaČi sÄ ne contactaČi. AČteptÄm cu entuziasm sÄ reveniČi Či vÄ invitÄm sÄ ne adÄugaČi la lista de favorite!