👤

Comparati:
2 la puterea 302 si 3 la puterea 203 .


Răspuns :

Hmm, presupunem ca [tex]2^{302}\ \textless \ 3^{203}[/tex]. Ca sa verificam, logaritmam expresia si vedem ce da:
[tex]2^{302}\ \textless \ 3^{203} \Leftrightarrow \lg2^{302}\ \textless \ \lg3^{203}\Leftrightarrow 302\lg2\ \textless \ 203\lg3 \Leftrightarrow \frac{302}{203} \ \textless \ \frac{\lg3}{\lg2} \\ \Leftrightarrow \frac{302}{203} \ \textless \ \log_2 3.[/tex]
Dar [tex]\log_23 = \log_2 \sqrt{9} \ \textgreater \ \log_2 \sqrt{8} = \log_2 2^{\frac{3}{2}} = \frac{3}{2} \Rightarrow \log_23 \ \textgreater \ \frac{3}{2}.[/tex]
[tex]\frac{3}{2} \ \textgreater \ \frac{302}{203}[/tex] (se verifica usor prin calcul).
[tex]\Rightarrow \log_23 \ \textgreater \ \frac{302}{203}.[/tex] Deci presupunerea facuta este adevarata.
================================================
Si pentru clasa a 5-a: :D
[tex]2^{302} = 2^2 \cdot 2^{300} = 4 \cdot (2^3)^{100} = 4 \cdot 8^{100}.\\ 3^{203} = 3^3 \cdot 3^{200} = 27 \cdot (3^2)^{100} = 27 \cdot 9^{100}[/tex], de unde se vede clar ca [tex]2^{302}\ \textless \ 3^{203}[/tex].