x²+2√3x-√3=0
Folosind relatiile lui Viete:
S = [tex]x_{1}+x_{2} [/tex] = -b/a = -2√3
P = [tex] x_{1} x_{2} [/tex] = c/a = -√3
[tex] \frac{1}{ x_{1} }+ \frac{1}{ x_{2} } = [/tex][tex] \frac{ x_{1} + x_{2} }{ x_{1} x_{2} } = \frac{S}{P} = \frac{-2 \sqrt{3} }{ -\sqrt{3} } [/tex] = 2