[tex]S=\dfrac{1}{\sqrt{(\sqrt2+\sqrt1)^2}}+\dfrac{1}{\sqrt{(\sqrt3+\sqrt2)^2}}+\dfrac{1}{\sqrt{(\sqrt4+\sqrt3)^2}}+...+\dfrac{1}{\sqrt{(\sqrt{n+1}+\sqrt n})^2}=[/tex]
[tex]=\dfrac{1}{\sqrt2+\sqrt1}+\dfrac{1}{\sqrt3+\sqrt2}+\dfrac{1}{\sqrt4+\sqrt3}+...+\dfrac{1}{\sqrt{n+1}+\sqrt n}=[/tex]
[tex]=\dfrac{\sqrt2-\sqrt1}{2-1}+\dfrac{\sqrt3-\sqrt2}{3-2}+\dfrac{\sqrt4-\sqrt3}{4-3}+...+\dfrac{\sqrt{n+1}-\sqrt n}{n+1-1}=[/tex]
[tex]=\sqrt{n+1}-1[/tex]