Răspuns :
1.a)
(6 +12+18+24+...+600)² = [6(1+2+3+...+100)]² = 36(1+2+3+...+100)² = 36(1+2+3+...+100)(1+2+3+...+100)
( 3+6+9+12+...+300) = 3(1+2+3+...+100)
(6 +12+18+24+...+600) / [( 3+6+9+12+...+300) * (1+2+3+...+100)] =
= [36(1+2+3+...+100)(1+2+3+...+100)] /[3(1+2+3+...+100) * (1+2+3+...+100)] =
= 36 / 3 = 12
2)
2a + b = 5 Inmultim ecuatia 1 cu 2
2b + 3c = 7 Inmultim ecuatia 2 cu 3
-------
4a + 2b = 10
6b + 9c = 21
------------------------------Adunam ecuatiile
4a + 8b + 9c = 31
3)Rezolvati :
a) 32 + 6 *x=11*x-113 <=> 11x - 6x = 113 + 32 <=> 5x = 145 => x = 145 / 5 = 29
b)8+13*x=2*x+41 <=> 11x = 33 => x = 33 / 11 = 3
c) 9 la puterea 2ori x =81 la puterea 4 <=> 9^(2x) = 9² => 2x = 2 => x = 1
d )8 la puterea 3ori x=64 la puterea 3 <=> 8^(3x) = (8²)^3 <=> 3x = 2*3 => x = 6 / 3 = 2
e)3 la puterea x+2 + 3 la puterea x=270 <=> 3^x (3² + 1) = 270 <=> 3^x = 270 / 10
=>3^x = 27 <=> 3^x = 3^3 => x = 3
f)3* 2 la puterea x+2 -5*2 la puterea x+1 -2 la puterea x =2
=> 2^x (3*2² - 5*2 - 1) = 2
2^x (12 - 10 - 1) = 2
2^x = 2^1
=> x = 1
g)5 la puterea x+2 - 2*5 la puterea x+1 -12 *5 la puterea x = 375
=> 5^x (5² - 2 * 5 - 12) = 375
=> 5^x (25 - 10 - 12) = 375
=> 5^x = 375 / 3
=> 5^x = 125
=> 5^x = 5^3
=> x = 3
h)2 la puterea x * 3 la puterea x+1 =108
=> 2^x * 3^x * 3^1 = 108
=> 6^x * 3 = 108 => 6^x = 108 / 3
=> 6^x = 36
=> 6^x = 6^6
=> x = 6
i)3 la puterea x+1 *5 la puterea x = 675 => 15^x * 3 = 675 => 15^x = 675 / 3
=> 15^x = 225
=> 15^x = 15²
=> x = 2
j) 3 la puterea x+2 *7 la puterea x - 3 la puterea x * 7 la puterea x+1 = 2940
21^x (3² - 7^1) = 2940
21^x * 2 = 2940 / 2
21^x = 1470
Aici este o greseala. 1470 nu este o putere a lui 21
=> [tex] x =log_{21} (1470)[/tex]
(6 +12+18+24+...+600)² = [6(1+2+3+...+100)]² = 36(1+2+3+...+100)² = 36(1+2+3+...+100)(1+2+3+...+100)
( 3+6+9+12+...+300) = 3(1+2+3+...+100)
(6 +12+18+24+...+600) / [( 3+6+9+12+...+300) * (1+2+3+...+100)] =
= [36(1+2+3+...+100)(1+2+3+...+100)] /[3(1+2+3+...+100) * (1+2+3+...+100)] =
= 36 / 3 = 12
2)
2a + b = 5 Inmultim ecuatia 1 cu 2
2b + 3c = 7 Inmultim ecuatia 2 cu 3
-------
4a + 2b = 10
6b + 9c = 21
------------------------------Adunam ecuatiile
4a + 8b + 9c = 31
3)Rezolvati :
a) 32 + 6 *x=11*x-113 <=> 11x - 6x = 113 + 32 <=> 5x = 145 => x = 145 / 5 = 29
b)8+13*x=2*x+41 <=> 11x = 33 => x = 33 / 11 = 3
c) 9 la puterea 2ori x =81 la puterea 4 <=> 9^(2x) = 9² => 2x = 2 => x = 1
d )8 la puterea 3ori x=64 la puterea 3 <=> 8^(3x) = (8²)^3 <=> 3x = 2*3 => x = 6 / 3 = 2
e)3 la puterea x+2 + 3 la puterea x=270 <=> 3^x (3² + 1) = 270 <=> 3^x = 270 / 10
=>3^x = 27 <=> 3^x = 3^3 => x = 3
f)3* 2 la puterea x+2 -5*2 la puterea x+1 -2 la puterea x =2
=> 2^x (3*2² - 5*2 - 1) = 2
2^x (12 - 10 - 1) = 2
2^x = 2^1
=> x = 1
g)5 la puterea x+2 - 2*5 la puterea x+1 -12 *5 la puterea x = 375
=> 5^x (5² - 2 * 5 - 12) = 375
=> 5^x (25 - 10 - 12) = 375
=> 5^x = 375 / 3
=> 5^x = 125
=> 5^x = 5^3
=> x = 3
h)2 la puterea x * 3 la puterea x+1 =108
=> 2^x * 3^x * 3^1 = 108
=> 6^x * 3 = 108 => 6^x = 108 / 3
=> 6^x = 36
=> 6^x = 6^6
=> x = 6
i)3 la puterea x+1 *5 la puterea x = 675 => 15^x * 3 = 675 => 15^x = 675 / 3
=> 15^x = 225
=> 15^x = 15²
=> x = 2
j) 3 la puterea x+2 *7 la puterea x - 3 la puterea x * 7 la puterea x+1 = 2940
21^x (3² - 7^1) = 2940
21^x * 2 = 2940 / 2
21^x = 1470
Aici este o greseala. 1470 nu este o putere a lui 21
=> [tex] x =log_{21} (1470)[/tex]
1) [6(1+2+3+.......+100)]^2÷3(1+2+3+......+100)÷(1+2+.....+100)=36÷3=12
2) [ 2a+b=5]·2⇒ 4a+2b=10
[2b+3c=7]·3⇒ 6b+9c=21 ⇒adunand cele doua egalitati ⇒4a+8b+9c=31
3) a) 32+113=11x-6x ⇒ 145=5x ⇒ x=29
b) 13x-2x=41-8 ⇒ 11x=33 ⇒ x=3
c) 9^2x=9^8 2x=8 x=4
d) 8^3x=8^6 3x=6 x=2
e) 3^x(3²+1) =270 3^x=3³ x=3
f) 2^x( 12-10-1)=2 x=1
g) 5^x( 25-10-12)=375 5^x·3=375 5^x=125 x=3
h) 2^x·3^(x+1)=2²·3³ x=2
i) 3^(x+1)·5^x=3³·5² x=2
j) 3^x·7^(x-3) [3²-7^4]=2940 3^x·7^(x-3)= ... ..este o greseala in enunt!!!!!!
Vă mulțumim pentru vizita pe platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, nu ezitați să ne contactați. Așteptăm cu entuziasm să reveniți și vă invităm să ne adăugați la lista de favorite!