Răspuns :
[tex]a).|x|=3 \Rightarrow x=3~sau~x=-3 \\ b).|x|=4 \Rightarrow x=4 ~sau~x=-4 \\ c).|x|=0 \Rightarrow x=0 \\ d).|x|=-1 \Rightarrow ~Nu~are~solutii[/tex]
[tex]e).|x+1|=3 \\ x+1=3 \Rightarrow x=3-1 \Rightarrow x=2 \\ x+1=-3 \Rightarrow x=-3-1 \Rightarrow x=-4[/tex]
[tex]f).|x-2|=4 \\ x-2=4 \Rightarrow x=4+2 \Rightarrow x=6 \\ x-2=-4 \Rightarrow x=-4+2 \Rightarrow x=-2[/tex]
[tex]g).|x+2|=0 \\ x+2=0 \Rightarrow x=0-2 \Rightarrow x=-2 \\ h).|x-3|=-6 \Rightarrow Nu~are~solutii[/tex]
[tex]\displaystyle i).3x \leq 6 \Rightarrow x \leq \frac{6}{3} \Rightarrow x \leq 2 \Rightarrow x \in ( - \infty , 2] \\ j).2x\ \textgreater \ -8 \Rightarrow x\ \textgreater \ - \frac{8}{2} \Rightarrow x\ \textgreater \ -4 \Rightarrow x \in (-4 , \infty )[/tex]
[tex]\displaystyle k).-4x\ \textless \ 12 \Rightarrow x\ \textless \ - \frac{12}{4} \Rightarrow x\ \textgreater \ -3 \Rightarrow x \in (-3 , \infty ) \\ l).-3x \geq 15 \Rightarrow x \geq - \frac{15}{3} \Rightarrow x \leq -5 \Rightarrow x \in ( - \infty , -5] \\ m).2(x+1)\ \textless \ 8 \Rightarrow 2x+2\ \textless \ 8 \Rightarrow 2x\ \textless \ 8-2 \Rightarrow 2x\ \textless \ 6 \Rightarrow x\ \textless \ \frac{6}{2} \Rightarrow \\ \Rightarrow x\ \textless \ 3 \Rightarrow x \in ( - \infty , 3)[/tex]
[tex]\displaystyle n).-3(x-1) \leq 7 \Rightarrow -3x+3 \leq 7 \Rightarrow -3x \leq 7-3 \Rightarrow -3x \leq 4 \Rightarrow \\ \Rightarrow x \geq - \frac{4}{3} \Rightarrow x \in \left[- \frac{4}{3} ,\infty \right) \\ o).-2(x+1)\ \textgreater \ -4 \Rightarrow -2x-2\ \textgreater \ -4 \Rightarrow -2x\ \textgreater \ -4+2 \Rightarrow \\ \Rightarrow -2x\ \textgreater \ -2 \Rightarrow x\ \textgreater \ \frac{-2}{-2} \Rightarrow x\ \textless \ 1 \Rightarrow x \in ( \infty , 1) [/tex]
[tex]\displaystyle p).-5(3-x) \geq 10 \Rightarrow -15+5x \geq 10 \Rightarrow 5x \geq 10+15 \Rightarrow \\ \Rightarrow 5x \geq 25 \Rightarrow x \geq \frac{25}{5} \Rightarrow x \geq 5\Rightarrow x \in [5 , \infty)[/tex]
[tex]\displaystyle q).1+2+3+...+40= \frac{40(40+1)}{2} = \frac{40 \cdot 41}{2} = \frac{1640}{2}=820 \\ \\ r). 1+2+3+...+100= \frac{100(100+1)}{2} = \frac{100 \cdot 101}{2} = \frac{10100}{2} =5050 \\ \\ s).1+2+3+...+101= \frac{101(101+1)}{2} = \frac{101 \cdot 102}{2} = \frac{10302}{2}=5151 [/tex]
[tex]t\displaystyle ).2+4+6+...+2000=2(1+2+3+...+1000)= \\ \\ =2 \cdot \frac{1000(1000+1)}{2} =2 \cdot \frac{1000 \cdot 1001}{2} =\not 2 \cdot \frac{1001000}{\not 2} =1001000[/tex]
[tex]\displaystyle u).3+6+9+...+1980=3(1+2+3+...+660)= \\ \\ =3 \cdot \frac{660(660+1)}{2} =3 \cdot \frac{660 \cdot 661}{2} =3 \cdot \frac{436260}{2} =3 \cdot 218130=654390[/tex]
[tex]e).|x+1|=3 \\ x+1=3 \Rightarrow x=3-1 \Rightarrow x=2 \\ x+1=-3 \Rightarrow x=-3-1 \Rightarrow x=-4[/tex]
[tex]f).|x-2|=4 \\ x-2=4 \Rightarrow x=4+2 \Rightarrow x=6 \\ x-2=-4 \Rightarrow x=-4+2 \Rightarrow x=-2[/tex]
[tex]g).|x+2|=0 \\ x+2=0 \Rightarrow x=0-2 \Rightarrow x=-2 \\ h).|x-3|=-6 \Rightarrow Nu~are~solutii[/tex]
[tex]\displaystyle i).3x \leq 6 \Rightarrow x \leq \frac{6}{3} \Rightarrow x \leq 2 \Rightarrow x \in ( - \infty , 2] \\ j).2x\ \textgreater \ -8 \Rightarrow x\ \textgreater \ - \frac{8}{2} \Rightarrow x\ \textgreater \ -4 \Rightarrow x \in (-4 , \infty )[/tex]
[tex]\displaystyle k).-4x\ \textless \ 12 \Rightarrow x\ \textless \ - \frac{12}{4} \Rightarrow x\ \textgreater \ -3 \Rightarrow x \in (-3 , \infty ) \\ l).-3x \geq 15 \Rightarrow x \geq - \frac{15}{3} \Rightarrow x \leq -5 \Rightarrow x \in ( - \infty , -5] \\ m).2(x+1)\ \textless \ 8 \Rightarrow 2x+2\ \textless \ 8 \Rightarrow 2x\ \textless \ 8-2 \Rightarrow 2x\ \textless \ 6 \Rightarrow x\ \textless \ \frac{6}{2} \Rightarrow \\ \Rightarrow x\ \textless \ 3 \Rightarrow x \in ( - \infty , 3)[/tex]
[tex]\displaystyle n).-3(x-1) \leq 7 \Rightarrow -3x+3 \leq 7 \Rightarrow -3x \leq 7-3 \Rightarrow -3x \leq 4 \Rightarrow \\ \Rightarrow x \geq - \frac{4}{3} \Rightarrow x \in \left[- \frac{4}{3} ,\infty \right) \\ o).-2(x+1)\ \textgreater \ -4 \Rightarrow -2x-2\ \textgreater \ -4 \Rightarrow -2x\ \textgreater \ -4+2 \Rightarrow \\ \Rightarrow -2x\ \textgreater \ -2 \Rightarrow x\ \textgreater \ \frac{-2}{-2} \Rightarrow x\ \textless \ 1 \Rightarrow x \in ( \infty , 1) [/tex]
[tex]\displaystyle p).-5(3-x) \geq 10 \Rightarrow -15+5x \geq 10 \Rightarrow 5x \geq 10+15 \Rightarrow \\ \Rightarrow 5x \geq 25 \Rightarrow x \geq \frac{25}{5} \Rightarrow x \geq 5\Rightarrow x \in [5 , \infty)[/tex]
[tex]\displaystyle q).1+2+3+...+40= \frac{40(40+1)}{2} = \frac{40 \cdot 41}{2} = \frac{1640}{2}=820 \\ \\ r). 1+2+3+...+100= \frac{100(100+1)}{2} = \frac{100 \cdot 101}{2} = \frac{10100}{2} =5050 \\ \\ s).1+2+3+...+101= \frac{101(101+1)}{2} = \frac{101 \cdot 102}{2} = \frac{10302}{2}=5151 [/tex]
[tex]t\displaystyle ).2+4+6+...+2000=2(1+2+3+...+1000)= \\ \\ =2 \cdot \frac{1000(1000+1)}{2} =2 \cdot \frac{1000 \cdot 1001}{2} =\not 2 \cdot \frac{1001000}{\not 2} =1001000[/tex]
[tex]\displaystyle u).3+6+9+...+1980=3(1+2+3+...+660)= \\ \\ =3 \cdot \frac{660(660+1)}{2} =3 \cdot \frac{660 \cdot 661}{2} =3 \cdot \frac{436260}{2} =3 \cdot 218130=654390[/tex]
Vă mulțumim pentru vizita pe platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, nu ezitați să ne contactați. Așteptăm cu entuziasm să reveniți și vă invităm să ne adăugați la lista de favorite!