Răspuns :
1x3y divizibil cu 6 => 1x3y este divizibil si cu 2 si cu 3.
Ne ocupam mai intai de divizibilitatea cu 2.
Un numar este divizibiol cu 2 daca ultima cifra este cifra para.
=> y poate lua oricare din valorile {0, 2, 4, 6, 8}
Dupa ce am ales o cifra pentru y, de ocupam de divbizibilitatea cu 3
Un numar este divizibil cu 3, daca suma cifrelor lui e divizibila cu 3
Dupa acest criteriu dam valori lui x dupa ce am dat o valoare lui y.
Sa trecem la treaba:
Suma cifrelor cunoscute ale numarului 1x3y = 1 + 3 = 4
-------
y = 0
=> 1 + 3 + 0 = 4
=> x ∈ {2; 5; 8} Deoarece 4 + 2 = 6; 4+ 5 = 9; 4 + 8 = 12
=> Numerele: 1230; 1530; 1830
=> pentru y = 0 obtinem 3 numere
-------
y = 2
=> 1 + 3 + 2 = 6
=> x ∈ {0; 3; 6; 9}
=> Numerele:1032; 1332; 1632; 1932
=> Pentru y = 2 obtinem 4 numere
-------
y = 4
=> 1 + 3 + 4 = 8
=> x ∈ {1; 4; 7}
=> Numerele: 1134; 1434; 1734
=> Pentru y = 4 obtinem 3 numere
-------
y = 6
=> 1 + 3 + 6 = 10
=> x ∈ {2; 5; 8}
=> Numerele: 1236; 1536; 1836
=> Pentru y = 6 obtinem 3 numere
-------
y = 8
=> 1 + 3 + 8 = 12
=> x ∈ {0; 3; 6; 9}
=> Numerele 1038; 1338; 1638; 1938
=> Pentru y = 8 obtinem 4 numere
-------
Numarul total de numere de forma 1x3y divizibile cu 6 sunt:
3 + 4 + 3 + 3 + 4 = 17 numere
Ne ocupam mai intai de divizibilitatea cu 2.
Un numar este divizibiol cu 2 daca ultima cifra este cifra para.
=> y poate lua oricare din valorile {0, 2, 4, 6, 8}
Dupa ce am ales o cifra pentru y, de ocupam de divbizibilitatea cu 3
Un numar este divizibil cu 3, daca suma cifrelor lui e divizibila cu 3
Dupa acest criteriu dam valori lui x dupa ce am dat o valoare lui y.
Sa trecem la treaba:
Suma cifrelor cunoscute ale numarului 1x3y = 1 + 3 = 4
-------
y = 0
=> 1 + 3 + 0 = 4
=> x ∈ {2; 5; 8} Deoarece 4 + 2 = 6; 4+ 5 = 9; 4 + 8 = 12
=> Numerele: 1230; 1530; 1830
=> pentru y = 0 obtinem 3 numere
-------
y = 2
=> 1 + 3 + 2 = 6
=> x ∈ {0; 3; 6; 9}
=> Numerele:1032; 1332; 1632; 1932
=> Pentru y = 2 obtinem 4 numere
-------
y = 4
=> 1 + 3 + 4 = 8
=> x ∈ {1; 4; 7}
=> Numerele: 1134; 1434; 1734
=> Pentru y = 4 obtinem 3 numere
-------
y = 6
=> 1 + 3 + 6 = 10
=> x ∈ {2; 5; 8}
=> Numerele: 1236; 1536; 1836
=> Pentru y = 6 obtinem 3 numere
-------
y = 8
=> 1 + 3 + 8 = 12
=> x ∈ {0; 3; 6; 9}
=> Numerele 1038; 1338; 1638; 1938
=> Pentru y = 8 obtinem 4 numere
-------
Numarul total de numere de forma 1x3y divizibile cu 6 sunt:
3 + 4 + 3 + 3 + 4 = 17 numere
Vă mulțumim pentru vizita pe platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, nu ezitați să ne contactați. Așteptăm cu entuziasm să reveniți și vă invităm să ne adăugați la lista de favorite!