Răspuns :
cos (2π/11) = 0,84
cos (4π/11) = 0,42
cos (6π/11) = -0,14
cos (8π/11) = -0,65
cos (10π/11) = -0,96
E= cos (2π/11) + cos (4π/11) + cos (6π/11) + cos (8π/11) + cos (10π/11) =
= 0,84 + 0,42 - 0,14 - 0,65 - 0,96 = -0,5 = -1 / 2
cos (4π/11) = 0,42
cos (6π/11) = -0,14
cos (8π/11) = -0,65
cos (10π/11) = -0,96
E= cos (2π/11) + cos (4π/11) + cos (6π/11) + cos (8π/11) + cos (10π/11) =
= 0,84 + 0,42 - 0,14 - 0,65 - 0,96 = -0,5 = -1 / 2
Fie numarul complex z=cos(2π/11)+isin(2π/11).Folosind formula lui Moivre obtinem:
z^11=cos2π+isin2π=1=>z^11-1=0=>
(z-1)(z^10+z^9+z^8+...+z+1)=0=>
z^10+z^9+z^8+...+z+1=0=>
z^10+z^9+z^8+...+z=-1=>
z+z^2+z^3+z^4+z^5=-1-(z^10+z^9+z^8+z^7+z^6)
Partea reala a numarului z^10 este cos(20π/11)=cos(22π/11-2π/11)=cos(2π-2π/11)=
=cos(2π/11) si este egala cu partea reala a lui z.
Analog se arata ca partile reale ale lui z^9,z^8,z^7,z^6 sunt egale cu partile reale ale numerelor z^2,z^3,z^4,z^5.In concluzie,
z+z^2+z^3+z^4+z^5=-1-(z+z^2+z^3+z^4+z^5)=>
z+z^2+z^3+z^4+z^5=-1/2
z^11=cos2π+isin2π=1=>z^11-1=0=>
(z-1)(z^10+z^9+z^8+...+z+1)=0=>
z^10+z^9+z^8+...+z+1=0=>
z^10+z^9+z^8+...+z=-1=>
z+z^2+z^3+z^4+z^5=-1-(z^10+z^9+z^8+z^7+z^6)
Partea reala a numarului z^10 este cos(20π/11)=cos(22π/11-2π/11)=cos(2π-2π/11)=
=cos(2π/11) si este egala cu partea reala a lui z.
Analog se arata ca partile reale ale lui z^9,z^8,z^7,z^6 sunt egale cu partile reale ale numerelor z^2,z^3,z^4,z^5.In concluzie,
z+z^2+z^3+z^4+z^5=-1-(z+z^2+z^3+z^4+z^5)=>
z+z^2+z^3+z^4+z^5=-1/2
Vă mulțumim pentru vizita pe platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, nu ezitați să ne contactați. Așteptăm cu entuziasm să reveniți și vă invităm să ne adăugați la lista de favorite!