Răspuns :
9*(5+10+15+...+200) / 41
ca sa fie patrat perfect ar trebui sa iti dea ceva de genul n8n.
Deci:
5+10+15+...+200 =
5(1+2+3+..+40)=
1+2+3+..+40 = n(n+1)/2=
40*41/2=
20*41
Paranteza iti da 5(20*41)
9*5*20*41/41= 41 cu 41 se simplifica si ramane
9*5*20=
45*20=900, dar 900=30x30 => patrat perfect sau daca vrei Radical din 900= 30 => nr este pareat perfect
ca sa fie patrat perfect ar trebui sa iti dea ceva de genul n8n.
Deci:
5+10+15+...+200 =
5(1+2+3+..+40)=
1+2+3+..+40 = n(n+1)/2=
40*41/2=
20*41
Paranteza iti da 5(20*41)
9*5*20*41/41= 41 cu 41 se simplifica si ramane
9*5*20=
45*20=900, dar 900=30x30 => patrat perfect sau daca vrei Radical din 900= 30 => nr este pareat perfect
Calculam paranteza:
S=5+10+15+...+200=5(1+2+3+...+40)
Din formula Sumei lui Gauss:
1+2+3+...+n=n(n+1)/2 deducem:
S=5*40*41/2=5*20*41=4*5*5*41=4*25*41 si inlocuim in ex dat:
9*(5+10+15+...+200) / 41=9*4*25*41/41=9*4*25=3^2*2^2*5^2=(2*3*5)^2 deci e patrat perfect.
S=5+10+15+...+200=5(1+2+3+...+40)
Din formula Sumei lui Gauss:
1+2+3+...+n=n(n+1)/2 deducem:
S=5*40*41/2=5*20*41=4*5*5*41=4*25*41 si inlocuim in ex dat:
9*(5+10+15+...+200) / 41=9*4*25*41/41=9*4*25=3^2*2^2*5^2=(2*3*5)^2 deci e patrat perfect.
Vă mulțumim pentru vizita pe platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, nu ezitați să ne contactați. Așteptăm cu entuziasm să reveniți și vă invităm să ne adăugați la lista de favorite!