👤

VA ROG AJUTATI-MA!!
EX6
99 DE PUNCTE+COROANA


VA ROG AJUTATIMA EX6 99 DE PUNCTECOROANA class=

Răspuns :

[tex]\displaystyle 6a).(-2)^{-4} \cdot (-2)^{-2}:2^{-3}= \frac{1}{2^4} \cdot \frac{1}{2^2} : \frac{1}{2^3} = \frac{1}{16} \cdot \frac{1}{4} : \frac{1}{8} = \frac{1}{16} \cdot \frac{1}{4} \cdot 8= \\ \\ = \frac{1}{64} \cdot 8= \frac{8}{64} = \frac{1}{8} [/tex]

[tex]\displaystyle b).6^{-3}:(-6)^{-8}:36^2= \frac{1}{6^3} : \frac{1}{6^8} :1296= \frac{1}{216} : \frac{1}{1679616} :1296= \\ \\ = \frac{1}{216} \cdot 1679616 \cdot \frac{1}{1296} = \frac{1679616}{216} \cdot \frac{1}{1296} = \frac{1679616}{279936} =6[/tex]

[tex]\displaystyle c).3^{-10} \cdot 3^2:(-27)^{-2}= \frac{1}{3^{10}} \cdot 9: \frac{1}{27^2} = \frac{1}{59049} \cdot 9: \frac{1}{729} = \\ \\ = \frac{9}{59049} \cdot 729= \frac{6561}{59049} = \frac{1}{9} [/tex]

[tex]\displaystyle d).5^{-4} \cdot \frac{1}{25} \cdot 625^{-4}: \frac{1}{5^1^2} = \frac{1}{5^4} \cdot \frac{1}{25} \cdot \frac{1}{625^4} \cdot 5^1^2= \\ \\ = \frac{1}{5^4} \cdot \frac{1}{5^2} \cdot \frac{1}{(5^4)^4} \cdot 5^1^2=\frac{1}{5^4} \cdot \frac{1}{5^2} \cdot \frac{1}{5^1^6} \cdot 5^1^2= \frac{1}{5^{4+2+16}} \cdot 5^1^2= \\ \\ = \frac{1}{5^2^2} \cdot 5^1^2= \frac{5^{12}}{5^2^2} =5^{-10}[/tex]

[tex]\displaystyle e).\left( \frac{1}{27} \right)^4 \cdot [(-3)^2]^3 \cdot 9: \left( \frac{1}{3^{-1}} \right)^6= \frac{1}{27^4} \cdot \left( \frac{1}{3^2} \right )^3\cdot 9:\left( \frac{1}{ \frac{1}{3} } \right)^6= \\ \\ = \frac{1}{27^4} \cdot \left( \frac{1}{9} \right)^3 \cdot 9 : \left( \frac{1}{3} \right)^6= \frac{1}{27^4} \cdot \frac{1}{9^3} \cdot 9: \frac{1}{3^6} = \frac{1}{531441} \cdot \frac{1}{729} \cdot 9: \frac{1}{729} = [/tex]

[tex]\displaystyle = \frac{1}{531441} \cdot \frac{1}{729} \cdot 9\cdot 729= \frac{9}{531441} = \frac{1}{59049} [/tex]

[tex]\displaystyle f).100^5 \cdot \left(- \frac{1}{10} \right)^6:[(-10)^{-1}]^{-2} \cdot \frac{1}{1000} =100^5 \cdot \frac{1}{1000000} :100 \cdot \frac{1}{1000} = \\ \\ =10000000000 \cdot \frac{1}{1000000} \cdot \frac{1}{100} \cdot \frac{1}{1000} = \frac{10000000000}{100000000} \cdot \frac{1}{1000} = \\ \\ = \frac{10000000000 }{100000000000} = \frac{1}{10}[/tex]

[tex]\displaystyle g).\left( \frac{1}{4} \right )^{-3} \cdot \frac{1}{4^8} \cdot 4^5\cdot 4^{-6}= 4^3 \cdot \frac{1}{6536}\cdot 1024 \cdot \frac{1}{4^6} = \\ \\ =64 \cdot \frac{1}{6536} \cdot 1024 \cdot \frac{1}{4096} = \frac{64}{6536} \cdot \frac{1024}{4096} = \frac{65536}{26771456} = \frac{2}{817} [/tex]

[tex]\displaystyle h). \frac{\not9^3 \cdot 3^{-2} \cdot (-3)^4 \cdot 27^{-3}}{\left( \frac{1}{3} \right )^{-2}\cdot \not9^3} = \frac{ \frac{1}{9} \cdot 81 \cdot \frac{1}{19683} }{9} = \frac{ \frac{81}{9} \cdot \frac{1}{19683} }{9} = \\ \\ = \frac{9 \cdot \frac{1}{19683} }{9} = \frac{ \frac{9}{19683} }{9}= \frac{9}{19683} :9= \frac{\not9}{19683} \cdot \frac{1}{\not 9}= \frac{1}{19683}[/tex]

[tex]\displaystyle i).(-5)^{-2} \cdot \left(- \frac{1}{5} \right)^{-3} \cdot (-5)^4 : \left( \frac{1}{5} \right)^{-5}= \frac{1}{5^2} \cdot (-5^3) \cdot 625:5^5= \\ \\ = \frac{1}{25} \cdot (-125) \cdot 625:3125=- \frac{125}{25} \cdot 625:3125=-5 \cdot 625:3125= \\ \\ =-3125:3125=-1 [/tex]

[tex]\displaystyle j).\left[\left(- \frac{1}{2}\right)^{-3}\cdot \left(2- \frac{5}{2} \right)^{-2} \right]^2: \left(6 \frac{1}{2} -7\right)^{-7}= [/tex]

[tex]\displaystyle \left[-8 \cdot \left( \frac{4-5}{2} \right)^{-2}\right]^{2}:\left( \frac{13}{2} -7\right)^{-7}=\left[-8 \cdot \left(- \frac{1}{2} \right)^{-2}\right]^2:\left( \frac{13-14}{2} \right)^{-7} \\ \\ =\left(-8 \cdot 4\right)^2:\left(- \frac{1}{2} \right)^{-7}=(-32)^2:(- 2^7)= 1024:(-128)=-8[/tex]

[tex]\displaystyle k).\left( \frac{1}{2} - \frac{2}{3} \right)^{-6} \cdot \left( \frac{2}{3} - \frac{1}{2} \right)^4: \frac{1}{36^{-1}} =\left( \frac{3}{6} - \frac{4}{6} \right)^{-6}\cdot \left( \frac{4}{6} - \frac{3}{6} \right)^4: \frac{1}{ \frac{1}{36} }= [/tex]

[tex]\displaystyle =\left(- \frac{1}{6} \right)^{-6} \cdot \left( \frac{1}{6} \right)^4: \frac{1}{36} =6^6 \cdot \frac{1}{6^4} : \frac{1}{ \frac{1}{36} } =46656 \cdot \frac{1}{1296}: 36 = \\ \\ = \frac{46656}{1296} :36 =36 : 36=1 [/tex]

[tex]\displaystyle l).\left(1 \frac{1}{2} \right)^{-4}:\left(0,25+1 \frac{1}{4} \right):\left( \frac{16}{81} \right)^{-1}=\left( \frac{3}{2} \right)^{-4}:\left( \frac{25}{100} + \frac{5}{4} \right): \frac{81}{16} = \\ \\ = \frac{16}{81} :\left( \frac{25}{100} + \frac{125}{100} \right): \frac{81}{16} = \frac{16}{81} : \frac{150}{100} : \frac{81}{16} = \frac{16}{81} \cdot \frac{100}{150} \cdot \frac{16}{81} = \\ \\ = \frac{1600}{12150} \cdot \frac{16}{81} = \frac{25600}{984150}= \frac{512}{19683}[/tex]

[tex]\displaystyle m).|-2|^{-4} \cdot \frac{1}{8^{-3}} :|-32|=2^{-4} \cdot \frac{1}{ \frac{1}{8^3} } :32= \frac{1}{2^4} \cdot \frac{1}{ \frac{1}{512} } :32= \\ \\ = \frac{1}{16} \cdot 512:32= \frac{512}{16} :32=32:32=1[/tex]


Vă mulțumim pentru vizita pe platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, nu ezitați să ne contactați. Așteptăm cu entuziasm să reveniți și vă invităm să ne adăugați la lista de favorite!


Viz Lesson: Alte intrebari