[tex](3^{32}:3^{2}+2^{2}*2^{25}-2003^{0}):(27^{10}+8^{9}-324:18^{2})=\\(3^{32-2}+2^{2+25}-1):[(3^{3})^{10}+(2^{3})^{9}-324:324)]=\\(3^{30}+2^{27}-1):(3^{3*10}+2^{3*9}-1)=\\(3^{30}+2^{27}-1):(3^{30}+2^{27}-1)=1[/tex]
Indicatie:
[tex]a^{m}:a^{n}=a^{m-n} \\ a^m*a^n=a^{m+n} \\ (a^m)^{n}=a^{m*n} \\ (a*b)^{n}=a^{n}*b^{n} \\ a^{1}=a[/tex]