👤

sa se calculeze determinantul matricei A la puterea 2010

A=[tex] \left[\begin{array}{ccc}-1&0\\3&-1\end{array}\right] [/tex]


Răspuns :

[tex] A^{2} = \left[\begin{array}{ccc}1&0\\0&1\end{array}\right] = I_{2} [/tex]
[tex] A^{3}= A^{2} x A= \left[\begin{array}{ccc}-1&0\\0&-1\end{array}\right] =A[/tex]
[tex] A^{4}= A^{3} x A= \left[\begin{array}{ccc}1&0\\0&1\end{array}\right]= I_{2} [/tex]
....
...
...
...
[tex] A^{2010} = (A^{2})^{1005}= ( I_{2} )^{1005}= I_{2} [/tex]