Răspuns :
Daca √[ab(barat)+ba(barat)]∈Q atunci ab(barat)+ba(batat) este patrat perfect .
ab(barat)+ba(barat)=10a+b+10b+a=11a+11b =11(a+b) unde a si b sunt cifre nenule . Deoarece 11(a+b) trebuie sa fie patrat perfect , atunci a+b=11 ; dar a+b=11 numai in urmatoarele situatii : 2+9=11 ; 3+8=11 ; 4+7=11 ; 5+6=11 ; 6+5=11 ; 7+4=11 ; 8+3=11 ; 9+2=11 ; Din toate aceste 8 situatii posibile se accepta numai 6+5=11 adica a=6 si b=5 de unde⇒ ab(barat)=65 (deoarece numai 65 este divizibil cu 5) ; deci doar 65 verifica cerintele problemei : ab(barat)+ba(barat)=65+56=121 care este patrat perfect , deci
√(65+56)=√121=11 si deci ab(barat)=65.
ab(barat)+ba(barat)=10a+b+10b+a=11a+11b =11(a+b) unde a si b sunt cifre nenule . Deoarece 11(a+b) trebuie sa fie patrat perfect , atunci a+b=11 ; dar a+b=11 numai in urmatoarele situatii : 2+9=11 ; 3+8=11 ; 4+7=11 ; 5+6=11 ; 6+5=11 ; 7+4=11 ; 8+3=11 ; 9+2=11 ; Din toate aceste 8 situatii posibile se accepta numai 6+5=11 adica a=6 si b=5 de unde⇒ ab(barat)=65 (deoarece numai 65 este divizibil cu 5) ; deci doar 65 verifica cerintele problemei : ab(barat)+ba(barat)=65+56=121 care este patrat perfect , deci
√(65+56)=√121=11 si deci ab(barat)=65.
Vă mulțumim pentru vizita pe platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, nu ezitați să ne contactați. Așteptăm cu entuziasm să reveniți și vă invităm să ne adăugați la lista de favorite!