Răspuns :
a)
2+4+6+......+98+100=... este de forma 2+4+6+........+2n=n*(n+1);
2n=100 => n=100:2 => n=50
S=50*51=2550
b)
3+6+9+.....+180=.... este de forma 3+6+9+.....+3n=n*(n+1)/2*3;
3n=180 => n=180:3 => n=60
S=60*61/2*3=5490
c)
4+8+12+....+360=... este de forma 4+8+12+...+4n=n*(n+1)*2;
4n=360 => n=360:4 => n=90
S=90*91*2=16380
d)
5+10+15+....+625=.... este de forma 5+10+15+....+5n=n*(n+1)/2*5;
5n=625 => n=625:5 => n=125
S=125*126/2*5=39375
e)
1+3+5+.....+201=... este de forma 1+3+5+...+2n-1=n*n=n²;
2n-1=201 => 2n=201+1 => 2n=202 => n=202:2 => n=101
S=101*101=101²=10201
f)
1+4+7+....+301=... este de forma 1+4+7+...+3n-2=n*(3n-1):2
3n-2=301 => 3n=301+2 => 3n=303 => n=303:3 => n=101
S=101*(303-1):2=101*302:2=30502:2=15251
g)
2+7+12+.....+177=... este de forma 2+7+12+....+5n-3=(n:2)(5n-1)
5n-3=177 => 5n=177+3 => 5n=180 => n=180:5 => n=36
S=(36:2)(180-1)=18*179=3222
h)
3+7+11+...+199=... este de forma 3+7+11+.....+4n-1=n(2n+1)
4n-1=199 => 4n=199+1 => 4n=200 => n=200:4 => n=50
S=50*(100+1)=50*101=5050
i)
1+6+11+.....+2006+2011=... este de forma 1+6+11+...+5n-4=n(5n-3):2
5n-4=2011 => 5n=2011+4 => 5n=2015 => n=2015:5 => n=403
S=403*(2015-3):2=403*2012:2=810836:2=405418
j)
1+4+7+....+2011+2014=... este de forma 1+4+7+....+3n-2=n*(3n-1):2
3n-2=2014 => 3n=2014+2 => 3n=2016 => n=2016:3 => n=672
S=672*(2016-1):2=672*2015:2=1354080:2=677040
2+4+6+......+98+100=... este de forma 2+4+6+........+2n=n*(n+1);
2n=100 => n=100:2 => n=50
S=50*51=2550
b)
3+6+9+.....+180=.... este de forma 3+6+9+.....+3n=n*(n+1)/2*3;
3n=180 => n=180:3 => n=60
S=60*61/2*3=5490
c)
4+8+12+....+360=... este de forma 4+8+12+...+4n=n*(n+1)*2;
4n=360 => n=360:4 => n=90
S=90*91*2=16380
d)
5+10+15+....+625=.... este de forma 5+10+15+....+5n=n*(n+1)/2*5;
5n=625 => n=625:5 => n=125
S=125*126/2*5=39375
e)
1+3+5+.....+201=... este de forma 1+3+5+...+2n-1=n*n=n²;
2n-1=201 => 2n=201+1 => 2n=202 => n=202:2 => n=101
S=101*101=101²=10201
f)
1+4+7+....+301=... este de forma 1+4+7+...+3n-2=n*(3n-1):2
3n-2=301 => 3n=301+2 => 3n=303 => n=303:3 => n=101
S=101*(303-1):2=101*302:2=30502:2=15251
g)
2+7+12+.....+177=... este de forma 2+7+12+....+5n-3=(n:2)(5n-1)
5n-3=177 => 5n=177+3 => 5n=180 => n=180:5 => n=36
S=(36:2)(180-1)=18*179=3222
h)
3+7+11+...+199=... este de forma 3+7+11+.....+4n-1=n(2n+1)
4n-1=199 => 4n=199+1 => 4n=200 => n=200:4 => n=50
S=50*(100+1)=50*101=5050
i)
1+6+11+.....+2006+2011=... este de forma 1+6+11+...+5n-4=n(5n-3):2
5n-4=2011 => 5n=2011+4 => 5n=2015 => n=2015:5 => n=403
S=403*(2015-3):2=403*2012:2=810836:2=405418
j)
1+4+7+....+2011+2014=... este de forma 1+4+7+....+3n-2=n*(3n-1):2
3n-2=2014 => 3n=2014+2 => 3n=2016 => n=2016:3 => n=672
S=672*(2016-1):2=672*2015:2=1354080:2=677040
[tex]\displaystyle a).2+4+6+...+98+100=2(1+2+3+...+49+50)= \\ \\ =2 \times \frac{50(50+1)}{2} =2 \times \frac{50 \times 51}{2} =\not 2 \times \frac{2550}{ \not 2} =2550 \\ \\ b).3+6+9+...+180=3(1+2+3+...+60)=3 \times \frac{60(60+1)}{2} = \\ \\ =3 \times \frac{60 \times 61}{2} =3 \times \frac{3660}{2} =3 \times 1830=5490 \\ \\ c).4+8+12+...360=4(1+2+3+...+90)=4 \times \frac{90(90+1)}{2} = \\ \\ =4 \times \frac{90 \times 91}{2} =4 \times \frac{8190}{2} =4 \times 4095=16380[/tex]
[tex]\displaystyle d).5+10+15+...+625=5(1+2+3+...+125)= \\ \\ =5 \times \frac{125(125+1)}{2} =5 \times \frac{125 \times 126}{2} =5 \times \frac{15750}{2} = \\ \\ =5 \times 7875=39375[/tex]
[tex]\displaystyle e).1+3+5+...+201= \\ \\ =1+2+3+4+5+...+201-(2+4+6+...+200)= \\ \\ = \frac{201(201+1)}{2} -2(1+2+3+...+100)= \\ \\ = \frac{201 \times 202}{2} -2 \times \frac{100(100+1)}{2} = \frac{40602}{2} -2 \times \frac{100 \times 101}{2} = \\ \\ =20301- \not 2 \times \frac{10100}{\not 2} =20301-10100=10201[/tex]
[tex]\displaystyle f).1+4+7+...+301= \\ \\ =1+(1+3)+(1+2 \times 3)+(1+3 \times 4)+...+(1+3 \times 100)= \\ \\ =1 \times 101+3+3 \times 2+3 \times 3+...+3 \times 100= \\ \\ =101+3+6+9+...+300=101+3(1+2+3+...+100)= \\ \\ =101+3 \times \frac{100(100+1)}{2} =101+3 \times \frac{100 \times 101}{2} = \\ \\ =101+3 \times \frac{10100}{2} =101+3 \times 5050=101+15150=15251[/tex]
[tex]\displaystyle g).2+7+12+...+177 \\ \\ 177=2+(n-1) \times 5 \\ \\ 177=2+5n-5 \\ \\ -5n=2-5-177 \\ \\ -5n=-180 \\ \\ n= \frac{-180}{-5} \\ \\ n=36 [/tex]
[tex]\displaystyle S_3_6= \frac{4+35 \times 5}{2} \times 36 \\ \\ S_3_6= \frac{4+175}{\not2} \times \not36 \\ \\ S_3_6= 179 \times 18 \\ \\ S_3_6=3222[/tex]
[tex]\displaystyle h).3+7+11+...+199 \\ \\ 199=3+(n-1) \times 4 \\ \\ 199=3+4n-4 \\ \\ 4n=199-3+4 \\ \\ 4n=200 \\ \\ n= \frac{200}{4} \\ \\ n=50[/tex]
[tex]\displaystyle S_5_0= \frac{6+49 \times 4}{2} \times 50 \\ \\ S_5_0= \frac{6+196}{2} \times 50 \\ \\ S_5_0= \frac{202}{2} \times 50 \\ \\ S_5_0=101 \times 50 \\ \\ S_5_0=5050[/tex]
[tex]\displaystyle i)1+6+11+...+2006+2011 \\ \\ 2011=1+(n-1) \times 5 \\ \\ 2011=1+5n-5 \\ \\ 5n=2011-1+5 \\ \\ 5n=2015 \\ \\ n= \frac{2015}{5} \\ \\ n=403[/tex]
[tex]\displaystyle S_{403}= \frac{2+402 \times 5}{2} \times 403 \\ \\ S_{403}= \frac{2+2010}{2} \times 403 \\ \\ S_{403}= \frac{2012}{2} \times 403 \\ \\ S_{403}=1006 \times 403 \\ \\ S_{403}=405418[/tex]
[tex]\displaystyle j)1+4+7+...+2011+2014 \\ \\ 2014=1+(n-1) \times 3 \\ \\ 2014=1+3n-3 \\ \\ 3n=2014-1+3 \\ \\ 3n=2016 \\ \\ n= \frac{2016}{3} \\ \\ n=672[/tex]
[tex]\displaystyle S_{672}= \frac{2+671 \times 3}{2} \times 672 \\ \\ S_{672}= \frac{2+2013}{2} \times 672 \\ \\ S_{672}= 2015 \times 336 \\ \\ S_{672}= 677040[/tex]
[tex]\displaystyle k).4+9+14+...+2009+2014 \\ \\ 2014=4+(n-1) \times 5 \\ \\ 2014=4+5n-5 \\ \\ 5n=2014-4+5 \\ \\ 5n=2015 \\ \\ n= \frac{2015}{5} \\ \\ n=403[/tex]
[tex]\displaystyle S_{403}= \frac{8+402 \times 5}{2} \times 403 \\ \\ S_{403}= \frac{8+2010}{2} \times 403 \\ \\ S_{403}= \frac{2018}{2} \times 403 \\ \\ S_{403}=1009 \times 403 \\ \\ S_{403}=406672[/tex]
[tex]\displaystyle d).5+10+15+...+625=5(1+2+3+...+125)= \\ \\ =5 \times \frac{125(125+1)}{2} =5 \times \frac{125 \times 126}{2} =5 \times \frac{15750}{2} = \\ \\ =5 \times 7875=39375[/tex]
[tex]\displaystyle e).1+3+5+...+201= \\ \\ =1+2+3+4+5+...+201-(2+4+6+...+200)= \\ \\ = \frac{201(201+1)}{2} -2(1+2+3+...+100)= \\ \\ = \frac{201 \times 202}{2} -2 \times \frac{100(100+1)}{2} = \frac{40602}{2} -2 \times \frac{100 \times 101}{2} = \\ \\ =20301- \not 2 \times \frac{10100}{\not 2} =20301-10100=10201[/tex]
[tex]\displaystyle f).1+4+7+...+301= \\ \\ =1+(1+3)+(1+2 \times 3)+(1+3 \times 4)+...+(1+3 \times 100)= \\ \\ =1 \times 101+3+3 \times 2+3 \times 3+...+3 \times 100= \\ \\ =101+3+6+9+...+300=101+3(1+2+3+...+100)= \\ \\ =101+3 \times \frac{100(100+1)}{2} =101+3 \times \frac{100 \times 101}{2} = \\ \\ =101+3 \times \frac{10100}{2} =101+3 \times 5050=101+15150=15251[/tex]
[tex]\displaystyle g).2+7+12+...+177 \\ \\ 177=2+(n-1) \times 5 \\ \\ 177=2+5n-5 \\ \\ -5n=2-5-177 \\ \\ -5n=-180 \\ \\ n= \frac{-180}{-5} \\ \\ n=36 [/tex]
[tex]\displaystyle S_3_6= \frac{4+35 \times 5}{2} \times 36 \\ \\ S_3_6= \frac{4+175}{\not2} \times \not36 \\ \\ S_3_6= 179 \times 18 \\ \\ S_3_6=3222[/tex]
[tex]\displaystyle h).3+7+11+...+199 \\ \\ 199=3+(n-1) \times 4 \\ \\ 199=3+4n-4 \\ \\ 4n=199-3+4 \\ \\ 4n=200 \\ \\ n= \frac{200}{4} \\ \\ n=50[/tex]
[tex]\displaystyle S_5_0= \frac{6+49 \times 4}{2} \times 50 \\ \\ S_5_0= \frac{6+196}{2} \times 50 \\ \\ S_5_0= \frac{202}{2} \times 50 \\ \\ S_5_0=101 \times 50 \\ \\ S_5_0=5050[/tex]
[tex]\displaystyle i)1+6+11+...+2006+2011 \\ \\ 2011=1+(n-1) \times 5 \\ \\ 2011=1+5n-5 \\ \\ 5n=2011-1+5 \\ \\ 5n=2015 \\ \\ n= \frac{2015}{5} \\ \\ n=403[/tex]
[tex]\displaystyle S_{403}= \frac{2+402 \times 5}{2} \times 403 \\ \\ S_{403}= \frac{2+2010}{2} \times 403 \\ \\ S_{403}= \frac{2012}{2} \times 403 \\ \\ S_{403}=1006 \times 403 \\ \\ S_{403}=405418[/tex]
[tex]\displaystyle j)1+4+7+...+2011+2014 \\ \\ 2014=1+(n-1) \times 3 \\ \\ 2014=1+3n-3 \\ \\ 3n=2014-1+3 \\ \\ 3n=2016 \\ \\ n= \frac{2016}{3} \\ \\ n=672[/tex]
[tex]\displaystyle S_{672}= \frac{2+671 \times 3}{2} \times 672 \\ \\ S_{672}= \frac{2+2013}{2} \times 672 \\ \\ S_{672}= 2015 \times 336 \\ \\ S_{672}= 677040[/tex]
[tex]\displaystyle k).4+9+14+...+2009+2014 \\ \\ 2014=4+(n-1) \times 5 \\ \\ 2014=4+5n-5 \\ \\ 5n=2014-4+5 \\ \\ 5n=2015 \\ \\ n= \frac{2015}{5} \\ \\ n=403[/tex]
[tex]\displaystyle S_{403}= \frac{8+402 \times 5}{2} \times 403 \\ \\ S_{403}= \frac{8+2010}{2} \times 403 \\ \\ S_{403}= \frac{2018}{2} \times 403 \\ \\ S_{403}=1009 \times 403 \\ \\ S_{403}=406672[/tex]
Vă mulțumim pentru vizita pe platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, nu ezitați să ne contactați. Așteptăm cu entuziasm să reveniți și vă invităm să ne adăugați la lista de favorite!