a) ΔEBF~ΔEAD( AD||BF ,∧E comun)
BF/AD=BE/AE
ΔFDC~ΔFBE(U.U.U)
BE/DC=BF/FC
scoatem BFdin a doua si o introducem in prima
BF=BE.FC/DC
(BE.FC)/(AD.DC)=BE/AE
la romb laturile sunt egale deci AD=DC
AD.AD=(AE.BE.FC)/BE
AD²=AE.FC
b)
dacaΔDFC~ΔFBE si
DH=HF
FG=GE
inseamna ca
ΔDHC~ΔBGE⇒
DC/BE=HC/BG
DC.BG=BE.CH