👤

Să se determine valorile reale ale lui x pentru care x(x-1) ≤ x + 15.

Răspuns :

[tex]x(x-1) \leq x+15 \\ \\ x^{2} -x \leq x+15 \\ \\ x^{2} -x-x-15 \leq 0 \\ \\ x^{2} -2x-15 \leq 0 \\ \\ x^{2} -5x+3x-15 \leq 0 \\ \\ x(x+3) -5(x+3) \leq 0 \\ \\( x-5)(x+3) \leq 0 \\ \\ x-5 \leq 0=\ \textgreater \ x=5 \\ \\ x+3 \leq 0=\ \textgreater \ x=-3[/tex]
Inecuatia se scrie x²-2x-15≤0. Trinomul de gradul al doilea este negativ pe intervalul inchis dintre cele doua radacini reale x1=-3, x2=5
Raspuns: [-3,5]