👤

Dacă şi z1 si z2 sunt rădăcinile complexe ale ecuaţiei [tex]z^{2} -z +1=0, atunci z_{1} ^{2015} + z_{2}^{2015} este?[/tex]

Răspuns :

[tex]z_i^2-z_i+1=0 \Rightarrow(z_i+1)(z_i^2-z_i+1)=z_i^3-1=0\Rightarrow z_i^3=1,i=1,2\\ z_i^{2015}=z_i^{2013}z_i^2=(z_i^3)^{671}z_i^2=1^{671}\cdot z_i^2=z_i^2\\ z_1^{2015}+z_2^{2015}=z_1^2+z_2^2=(z_1+z_2)^2-2z_1z_2=S^2-2P=1-2=-1[/tex]
Am folosit pe final si relatiile lui Viette. Sper ca e clar.