Răspuns :
Daca numerele nu sunt divizibile cu 13 sunt de forma:
Caz 1: a= 3n+1 => a²=9n²+6n+1 = 3(n²+2n) +1 = 3*m+1
sau Caz 2: a=3n+2 => a²=9n²+12n+4 =9n²+12n+3+1=3(n²+4n+1) +1=3*p+1
Daca adunam cei 2013 numere gen a² , vom avea indiferent cate sunt in cazul 1, sau in cazul 2:
Suma=3*( m+p+......)+1*2013 =3*(m+p+...)+3*671=3*[(m+p)+671] este divizibila cu 3.
Caz 1: a= 3n+1 => a²=9n²+6n+1 = 3(n²+2n) +1 = 3*m+1
sau Caz 2: a=3n+2 => a²=9n²+12n+4 =9n²+12n+3+1=3(n²+4n+1) +1=3*p+1
Daca adunam cei 2013 numere gen a² , vom avea indiferent cate sunt in cazul 1, sau in cazul 2:
Suma=3*( m+p+......)+1*2013 =3*(m+p+...)+3*671=3*[(m+p)+671] este divizibila cu 3.
inceraca a=3*n+1 sau a=3*n+2, atunci a la patrat = 3*m+1
Caz1) n=3*c+1 => n^2=(3*c+1)(3*c+1) => n^2=9*c^2+6*c+1 => n^2=3*(3*c^2+2*c)+1
Caz2) n=3*c+2 => n^2=(3*c+2)(3*c+2) => n^2=9*c^2+12*c+4 => n^2=3*(3*c^2+4*c+1)+1
N1^2=3*C1+1
N2^2=3*C2+1
N2013^2=3*C2013+1
obtinem ca N1^2+N2^2+ ... +N2013^2=3*(C1+C2+ ... +C2013)+2013*1=3*(C1+C2+ ... +C2013+671).
Asadar, suma patratelor a 2013 nr. naturale nedivizibile cu 3 este divizibila cu 3.
Caz1) n=3*c+1 => n^2=(3*c+1)(3*c+1) => n^2=9*c^2+6*c+1 => n^2=3*(3*c^2+2*c)+1
Caz2) n=3*c+2 => n^2=(3*c+2)(3*c+2) => n^2=9*c^2+12*c+4 => n^2=3*(3*c^2+4*c+1)+1
N1^2=3*C1+1
N2^2=3*C2+1
N2013^2=3*C2013+1
obtinem ca N1^2+N2^2+ ... +N2013^2=3*(C1+C2+ ... +C2013)+2013*1=3*(C1+C2+ ... +C2013+671).
Asadar, suma patratelor a 2013 nr. naturale nedivizibile cu 3 este divizibila cu 3.
Vă mulțumim pentru vizita pe platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, nu ezitați să ne contactați. Așteptăm cu entuziasm să reveniți și vă invităm să ne adăugați la lista de favorite!