👤

Calculati:6•(1+2+3+.....+100)²:[3•(1+2+3+..+100)]:(1+2+3+....+100)

Răspuns :

6·(1+2+3+.........+100)²:[3·(1+2+3+.......+100)]:(1+2+3+........+100)= 6·[100·(100+1):2]²:{3·[100·(100+1):2}:[100·(100+1):2]=
6·(50·101)²:[3·(50·101]:(50·101)=
6·5050²:3·5050:5050=
6·25502500:15150:5050=
153015000:15150:5050=
10100:5050=2
Regula lui gauss spune: S=[tex] \frac{n(n+1)}{2} [/tex]
Relatia devine: 6*([tex] \frac{100*101}{2} [/tex])²:3([tex] \frac{100*101}{2} [/tex]:[tex] \frac{100*101}{2} [/tex])
=6*(5050)²:(3*5050):5050
=6*5050²:3
=2*5050²