Răspuns :
Construim paralelogramul ABDC astfel incat
[tex]\vec{AB}+\vec{AC}=\vec{AD}\Rightarrow|\vec{AB}+\vec{AC}|=|\vec{AD}|\\ [/tex]
Se stie din regula triunghiului ca:
[tex]\vec{AB}-\vec{AC}=\vec{CB}\Rightarrow|\vec{AB}-\vec{AC}|=|\vec{CB}|\\ [/tex]
Aplicand ipoteza ca
[tex]|\vec{AB}+\vec{AC}|=|\vec{AB}-\vec{AC}| \text{ avem ca } |\vec{AD}|=|\vec{CB}|[/tex]
In paralelogramul ABDC avem lungimile diagonalelor AD si CB egale. Deci paralelogramul este dreptunghi. De unde rezulta ca m(CAB)=90 de grade.
[tex]\vec{AB}+\vec{AC}=\vec{AD}\Rightarrow|\vec{AB}+\vec{AC}|=|\vec{AD}|\\ [/tex]
Se stie din regula triunghiului ca:
[tex]\vec{AB}-\vec{AC}=\vec{CB}\Rightarrow|\vec{AB}-\vec{AC}|=|\vec{CB}|\\ [/tex]
Aplicand ipoteza ca
[tex]|\vec{AB}+\vec{AC}|=|\vec{AB}-\vec{AC}| \text{ avem ca } |\vec{AD}|=|\vec{CB}|[/tex]
In paralelogramul ABDC avem lungimile diagonalelor AD si CB egale. Deci paralelogramul este dreptunghi. De unde rezulta ca m(CAB)=90 de grade.
Vă mulțumim pentru vizita pe platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, nu ezitați să ne contactați. Așteptăm cu entuziasm să reveniți și vă invităm să ne adăugați la lista de favorite!