Faci asa:
Trebuie sa desfaci toate numerele cu puteri folosind regulile: ([tex](x^{n} )^{m}=(x^{m} )^{n}=x^{n*m} \\ a=m*n=\ \textgreater \ x^{a}=x^{m*n}=(x^{m} )^{n} [/tex]
Deci [tex]-125^{20}=-(125^{2})^{10}[/tex] si [tex]25^{30}=(25^{3})^{10}[/tex].
Impartite dau [tex] \left \{ {{( \frac{-125^{2}}{25^{3}}) ^{10}} \atop {-125^{2}=-(5^{3})^{2}\atop{25^{3}=(5^{2})^{3}}}}\right.=\ \textgreater \ [ \frac{-(5^{3})^{2}}{(5^{2})^{3}} ]^{10}=[ \frac{(-5^{2})^{3}}{(5^{2})^{3}} ]^{10}=-1^{10}=-1[/tex]