Răspuns :
a) Ca sa poti demonstra ca AC perpendiculara pe AD e suficient sa arati ca triunghiul ADC este dreptunghic in unghiul DAC. Asta inseamna ca trebuie sa se aplice teorema lui Pitagora, adica DC²=AD²+AC². (1)
Trebuie sa calculzezi fiecare latura in parte si sa vezi daca iti verifica relatia.
Din triunghiul EDC unde ECD are 90 grade ( din ipoteza, EC perpendiculara pe plan) , DC²=ED²-EC² => DC²=25²-10² => DC²=625-100 => DC²=525. (2)
AD²=15²=225 (din ipoteza)
Din triunghiul AEC, unde ACE e de 90 grade ( din ipoteza, EC perpendiculara pe plan) , AC²=AE²-CE² => AC²=20²-10² => AC²=400-100 => AC²=300.
Inlocuiesti in relatia (1) si iti da 525=225+300 , relatie adevarata, deci DAC are 90 de grade, deci dreptele sunt perpendiculare.
b)AB=DC=5√21 (din relatia (2) )
P = 2AD+2AB = 2*15+ 2*5√21 = 30+10√21
A= AB*DF, unde DF perpendiculara pe AB
Trebuie sa calculzezi fiecare latura in parte si sa vezi daca iti verifica relatia.
Din triunghiul EDC unde ECD are 90 grade ( din ipoteza, EC perpendiculara pe plan) , DC²=ED²-EC² => DC²=25²-10² => DC²=625-100 => DC²=525. (2)
AD²=15²=225 (din ipoteza)
Din triunghiul AEC, unde ACE e de 90 grade ( din ipoteza, EC perpendiculara pe plan) , AC²=AE²-CE² => AC²=20²-10² => AC²=400-100 => AC²=300.
Inlocuiesti in relatia (1) si iti da 525=225+300 , relatie adevarata, deci DAC are 90 de grade, deci dreptele sunt perpendiculare.
b)AB=DC=5√21 (din relatia (2) )
P = 2AD+2AB = 2*15+ 2*5√21 = 30+10√21
A= AB*DF, unde DF perpendiculara pe AB
Vă mulțumim pentru vizita pe platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, nu ezitați să ne contactați. Așteptăm cu entuziasm să reveniți și vă invităm să ne adăugați la lista de favorite!