a) A0,A1,A2
[tex]A0=(0,2)[/tex] ,[tex]A1=(1,3)[/tex] , [tex]A2=(2,4)[/tex]
[tex] \left[\begin{array}{ccc}1&1&1\\0&1&2\\2&3&4\end{array}\right]=
4+4-0-(2+6)=4+4-2-6=6-6=0[/tex]
Punctele A0,A1,A2 sunt coliniare!
Punctul b)
[tex]A2015=(2015,2017)[/tex] si [tex]A2066=(2066,2068)[/tex]
[tex] \left[\begin{array}{ccc}1&1&1\\x&2015&2066\\y&2017&2068\end{array}\right] =
4167020+2066y+2017x-(2015y+4167122+2068x)=0
4167020+2066y+2017x-2015y-4167122-2068x=0
-51x -51y-102=0 /(-1)
51x+51y+102=0[/tex]