👤

[tex] \sqrt{5x+1} [/tex]-[tex] \sqrt{6x-2} [/tex]-[tex] \sqrt{x+6} [/tex]+[tex] \sqrt{2x+3} [/tex]=0

Răspuns :

conditii de existenta:
5x+1>=0=>x>=-1/5
6x-2>=0=>x>=1/3
x+6>=0=>x>=-6
2x+3>=0=>2x>=-3=>x>=-3/2
D=[1/3;+∞]
√(5x+1)+√(2x+3)=√(6x-2)+√(x+6)|()²
5x+1+2x+3+2√(5x+1)(2x+3)=6x+x-2+6+2√(6x-2)(x+6)
7x+4+2√(10x²+15x+2x+3)=7x+4+2√(6x²+36x-2x-12)
7x+4-7x-4+2√(10x²+17x+3)=2√(6x²+34x-12)
2√(10x²+17x+3)=2√(6x²+34x-12)|:2
√(10x²+17x+3)=√(6x²+34x-12)|()²
10x²+17x+3=6x²+34x-12
10x²-6x²+17x-34+3+12=0
4x²-17x+15=0
Δ=17²-4*4*15=289-240=49
x₁,₂=(17+-7)/8
x₁=(17+7)/8=24/8=3
x₂=(17-7)/8=10/8=5/4
S={3;5/4}