👤

aratati ca [tex] x_{0} [/tex] = [tex] \sqrt[3]{2} [/tex] +[tex] \sqrt[3]{3} [/tex] verifica ec:[tex] x^{3} [/tex] -6x-6=0

Răspuns :

Facem subtitutia [tex]x=y+ \frac{2}{y} [/tex]. Ecuatia se scrie:
[tex](y+ \frac{2}{y} )^3-6(y+ \frac{2}{y} )-6=0\\ y^6-6y^3+8=0\\ y^3=z\\ z^2-6z+8=0\\ z= 4 sau 2\\ y^3=4=>y=\sqrt[3]{4}=>x=\sqrt[3]{4}+ \frac{2}{\sqrt[3]{4}} =\sqrt[3]{4}+\frac{\sqrt[3]{8}}{\sqrt[3]{4}}\\ x=\sqrt[3]{4}+\sqrt[3]{2}[/tex]